Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD, Maastricht, The Netherlands.
J Neurosci. 2012 Oct 10;32(41):14205-16. doi: 10.1523/JNEUROSCI.1388-12.2012.
Auditory cortical processing of complex meaningful sounds entails the transformation of sensory (tonotopic) representations of incoming acoustic waveforms into higher-level sound representations (e.g., their category). However, the precise neural mechanisms enabling such transformations remain largely unknown. In the present study, we use functional magnetic resonance imaging (fMRI) and natural sounds stimulation to examine these two levels of sound representation (and their relation) in the human auditory cortex. In a first experiment, we derive cortical maps of frequency preference (tonotopy) and selectivity (tuning width) by mathematical modeling of fMRI responses to natural sounds. The tuning width maps highlight a region of narrow tuning that follows the main axis of Heschl's gyrus and is flanked by regions of broader tuning. The narrowly tuned portion on Heschl's gyrus contains two mirror-symmetric frequency gradients, presumably defining two distinct primary auditory areas. In addition, our analysis indicates that spectral preference and selectivity (and their topographical organization) extend well beyond the primary regions and also cover higher-order and category-selective auditory regions. In particular, regions with preferential responses to human voice and speech occupy the low-frequency portions of the tonotopic map. We confirm this observation in a second experiment, where we find that speech/voice selective regions exhibit a response bias toward the low frequencies characteristic of human voice and speech, even when responding to simple tones. We propose that this frequency bias reflects the selective amplification of relevant and category-characteristic spectral bands, a useful processing step for transforming a sensory (tonotopic) sound image into higher level neural representations.
听觉皮层对复杂有意义声音的处理需要将传入声信号的感觉(音调)表示转换为更高层次的声音表示(例如,其类别)。然而,这种转换的确切神经机制在很大程度上仍然未知。在本研究中,我们使用功能磁共振成像(fMRI)和自然声音刺激来研究人类听觉皮层中这两个声音表示水平(及其关系)。在第一个实验中,我们通过对自然声音 fMRI 响应进行数学建模,得出频率偏好(音调图)和选择性(调谐宽度)的皮层图。调谐宽度图突出显示了一个调谐狭窄的区域,该区域沿着 Heschl 回的主轴线,并由调谐较宽的区域环绕。Heschl 回上的狭窄调谐部分包含两个镜像对称的频率梯度,可能定义了两个不同的初级听觉区域。此外,我们的分析表明,频谱偏好和选择性(及其拓扑组织)不仅延伸到主要区域之外,还覆盖了更高阶和类别选择性的听觉区域。特别是,对人类语音和语音有优先反应的区域占据了音调图的低频部分。我们在第二个实验中证实了这一观察结果,在该实验中,我们发现语音/语音选择性区域表现出对人类语音和语音特征的低频的反应偏向,即使在响应简单音调时也是如此。我们提出,这种频率偏向反映了对相关和类别特征谱带的选择性放大,这是将感觉(音调)声音图像转换为更高层次的神经表示的有用处理步骤。