Suppr超能文献

评估人类听觉皮层中声处理的柱状稳定性。

Evaluating the Columnar Stability of Acoustic Processing in the Human Auditory Cortex.

机构信息

Maastricht Centre for Systems Biology and

Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, 6200 MD Maastricht University, Maastricht, The Netherlands.

出版信息

J Neurosci. 2018 Sep 5;38(36):7822-7832. doi: 10.1523/JNEUROSCI.3576-17.2018. Epub 2018 Aug 1.

Abstract

Using ultra-high field fMRI, we explored the cortical depth-dependent stability of acoustic feature preference in human auditory cortex. We collected responses from human auditory cortex (subjects from either sex) to a large number of natural sounds at submillimeter spatial resolution, and observed that these responses were well explained by a model that assumes neuronal population tuning to frequency-specific spectrotemporal modulations. We observed a relatively stable (columnar) tuning to frequency and temporal modulations. However, spectral modulation tuning was variable throughout the cortical depth. This difference in columnar stability between feature maps could not be explained by a difference in map smoothness, as the preference along the cortical sheet varied in a similar manner for the different feature maps. Furthermore, tuning to all three features was more columnar in primary than nonprimary auditory cortex. The observed overall lack of overlapping columnar regions across acoustic feature maps suggests, especially for primary auditory cortex, a coding strategy in which across cortical depths tuning to some features is kept stable, whereas tuning to other features systematically varies. In the human auditory cortex, sound aspects are processed in large-scale maps. Invasive animal studies show that an additional processing organization may be implemented orthogonal to the cortical sheet (i.e., in the columnar direction), but it is unknown whether observed organizational principles apply to the human auditory cortex. Combining ultra-high field fMRI with natural sounds, we explore the columnar organization of various sound aspects. Our results suggest that the human auditory cortex contains a modular coding strategy, where, for each module, several sound aspects act as an anchor along which computations are performed while the processing of another sound aspect undergoes a transformation. This strategy may serve to optimally represent the content of our complex acoustic natural environment.

摘要

利用超高场 fMRI,我们探究了人类听觉皮层中与皮层深度相关的声学特征偏好的稳定性。我们以亚毫米级空间分辨率采集了来自人类听觉皮层(来自不同性别的受试者)对大量自然声音的反应,并观察到这些反应可以通过假设神经元群体对特定于频率的频谱时间调制进行调谐的模型得到很好的解释。我们观察到与频率和时间调制相关的相对稳定(柱状)调谐。然而,频谱调制调谐在皮层深度上是可变的。特征图之间柱状稳定性的这种差异不能用图谱平滑度的差异来解释,因为不同特征图的皮层片上的偏好以类似的方式变化。此外,与非初级听觉皮层相比,初级听觉皮层对所有三种特征的调谐更具有柱状性。在整个皮层深度上,观察到的不同声学特征图之间缺乏重叠的柱状区域,这表明,尤其是对于初级听觉皮层,一种编码策略是保持某些特征的调谐柱状性稳定,而对其他特征的调谐则系统地变化。在人类听觉皮层中,声音方面以大规模图谱的形式进行处理。在侵入性动物研究中表明,可能会实现一种与皮层片正交的额外处理组织(即,在柱状方向上),但尚不清楚观察到的组织原则是否适用于人类听觉皮层。我们结合超高场 fMRI 和自然声音,探索了各种声音方面的柱状组织。我们的结果表明,人类听觉皮层包含一种模块化的编码策略,其中,对于每个模块,几个声音方面作为计算的参考点,而对另一个声音方面的处理则进行变换。这种策略可能有助于最佳地表示我们复杂的声学自然环境的内容。

相似文献

1
Evaluating the Columnar Stability of Acoustic Processing in the Human Auditory Cortex.
J Neurosci. 2018 Sep 5;38(36):7822-7832. doi: 10.1523/JNEUROSCI.3576-17.2018. Epub 2018 Aug 1.
2
Frequency preference and attention effects across cortical depths in the human primary auditory cortex.
Proc Natl Acad Sci U S A. 2015 Dec 29;112(52):16036-41. doi: 10.1073/pnas.1507552112. Epub 2015 Dec 14.
3
Distinct Representations of Tonotopy and Pitch in Human Auditory Cortex.
J Neurosci. 2022 Jan 19;42(3):416-434. doi: 10.1523/JNEUROSCI.0960-21.2021. Epub 2021 Nov 19.
4
5
Processing of natural sounds: characterization of multipeak spectral tuning in human auditory cortex.
J Neurosci. 2013 Jul 17;33(29):11888-98. doi: 10.1523/JNEUROSCI.5306-12.2013.
6
Functional Topography of Human Auditory Cortex.
J Neurosci. 2016 Jan 27;36(4):1416-28. doi: 10.1523/JNEUROSCI.0226-15.2016.
7
Spatial representations of temporal and spectral sound cues in human auditory cortex.
Cortex. 2013 Nov-Dec;49(10):2822-33. doi: 10.1016/j.cortex.2013.04.003. Epub 2013 Apr 24.
8
Encoding of natural sounds at multiple spectral and temporal resolutions in the human auditory cortex.
PLoS Comput Biol. 2014 Jan;10(1):e1003412. doi: 10.1371/journal.pcbi.1003412. Epub 2014 Jan 2.
9
Active Sound Localization Sharpens Spatial Tuning in Human Primary Auditory Cortex.
J Neurosci. 2018 Oct 3;38(40):8574-8587. doi: 10.1523/JNEUROSCI.0587-18.2018. Epub 2018 Aug 20.
10
Spectro-temporal modulation transfer function of single voxels in the human auditory cortex measured with high-resolution fMRI.
Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14611-6. doi: 10.1073/pnas.0907682106. Epub 2009 Aug 10.

引用本文的文献

1
Multilayer network analysis across cortical depths in 7-T resting-state fMRI.
Netw Neurosci. 2025 Apr 30;9(2):475-503. doi: 10.1162/netn_a_00436. eCollection 2025.
2
Dual Representation of the Auditory Space.
Brain Sci. 2024 May 24;14(6):535. doi: 10.3390/brainsci14060535.
3
Neuronal Modeling of Cross-Sensory Visual Evoked Magnetoencephalography Responses in the Auditory Cortex.
J Neurosci. 2024 Apr 24;44(17):e1119232024. doi: 10.1523/JNEUROSCI.1119-23.2024.
4
Acoustic and language-specific sources for phonemic abstraction from speech.
Nat Commun. 2024 Jan 23;15(1):677. doi: 10.1038/s41467-024-44844-9.
5
Multilayer Network Analysis across Cortical Depths in Resting-State 7T fMRI.
bioRxiv. 2024 Dec 10:2023.12.23.573208. doi: 10.1101/2023.12.23.573208.
6
Neuronal modeling of magnetoencephalography responses in auditory cortex to auditory and visual stimuli.
bioRxiv. 2024 Feb 13:2023.06.16.545371. doi: 10.1101/2023.06.16.545371.
7
Selective attention sharpens population receptive fields in human auditory cortex.
Cereb Cortex. 2023 Apr 25;33(9):5395-5408. doi: 10.1093/cercor/bhac427.
8
Cortical depth profiles of auditory and visual 7 T functional MRI responses in human superior temporal areas.
Hum Brain Mapp. 2023 Feb 1;44(2):362-372. doi: 10.1002/hbm.26046. Epub 2022 Aug 18.
9
LayNii: A software suite for layer-fMRI.
Neuroimage. 2021 Aug 15;237:118091. doi: 10.1016/j.neuroimage.2021.118091. Epub 2021 May 12.
10
Cortical Stimulation Induces Excitatory Postsynaptic Potentials of Inferior Colliculus Neurons in a Frequency-Specific Manner.
Front Neural Circuits. 2020 Oct 26;14:591986. doi: 10.3389/fncir.2020.591986. eCollection 2020.

本文引用的文献

1
Columnar Segregation of Magnocellular and Parvocellular Streams in Human Extrastriate Cortex.
J Neurosci. 2017 Aug 16;37(33):8014-8032. doi: 10.1523/JNEUROSCI.0690-17.2017. Epub 2017 Jul 19.
2
High resolution data analysis strategies for mesoscale human functional MRI at 7 and 9.4T.
Neuroimage. 2018 Jan 1;164:48-58. doi: 10.1016/j.neuroimage.2017.03.058. Epub 2017 Apr 14.
3
Sensitivity and specificity considerations for fMRI encoding, decoding, and mapping of auditory cortex at ultra-high field.
Neuroimage. 2018 Jan 1;164:18-31. doi: 10.1016/j.neuroimage.2017.03.063. Epub 2017 Mar 31.
4
Interdigitated Color- and Disparity-Selective Columns within Human Visual Cortical Areas V2 and V3.
J Neurosci. 2016 Feb 10;36(6):1841-57. doi: 10.1523/JNEUROSCI.3518-15.2016.
5
Frequency preference and attention effects across cortical depths in the human primary auditory cortex.
Proc Natl Acad Sci U S A. 2015 Dec 29;112(52):16036-41. doi: 10.1073/pnas.1507552112. Epub 2015 Dec 14.
6
Processing of frequency and location in human subcortical auditory structures.
Sci Rep. 2015 Nov 24;5:17048. doi: 10.1038/srep17048.
7
Layer specific sharpening of frequency tuning by selective attention in primary auditory cortex.
J Neurosci. 2014 Dec 3;34(49):16496-508. doi: 10.1523/JNEUROSCI.2055-14.2014.
8
High-Resolution Mapping of Myeloarchitecture In Vivo: Localization of Auditory Areas in the Human Brain.
Cereb Cortex. 2015 Oct;25(10):3394-405. doi: 10.1093/cercor/bhu150. Epub 2014 Jul 3.
9
Encoding of natural sounds at multiple spectral and temporal resolutions in the human auditory cortex.
PLoS Comput Biol. 2014 Jan;10(1):e1003412. doi: 10.1371/journal.pcbi.1003412. Epub 2014 Jan 2.
10
GLMdenoise: a fast, automated technique for denoising task-based fMRI data.
Front Neurosci. 2013 Dec 17;7:247. doi: 10.3389/fnins.2013.00247. eCollection 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验