Suppr超能文献

人类听觉皮层中自然声音在多个频谱和时间分辨率下的编码。

Encoding of natural sounds at multiple spectral and temporal resolutions in the human auditory cortex.

作者信息

Santoro Roberta, Moerel Michelle, De Martino Federico, Goebel Rainer, Ugurbil Kamil, Yacoub Essa, Formisano Elia

机构信息

Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands ; Maastricht Brain Imaging Center (MBIC), Maastricht, The Netherlands.

Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands ; Maastricht Brain Imaging Center (MBIC), Maastricht, The Netherlands ; Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, United States of America.

出版信息

PLoS Comput Biol. 2014 Jan;10(1):e1003412. doi: 10.1371/journal.pcbi.1003412. Epub 2014 Jan 2.

Abstract

Functional neuroimaging research provides detailed observations of the response patterns that natural sounds (e.g. human voices and speech, animal cries, environmental sounds) evoke in the human brain. The computational and representational mechanisms underlying these observations, however, remain largely unknown. Here we combine high spatial resolution (3 and 7 Tesla) functional magnetic resonance imaging (fMRI) with computational modeling to reveal how natural sounds are represented in the human brain. We compare competing models of sound representations and select the model that most accurately predicts fMRI response patterns to natural sounds. Our results show that the cortical encoding of natural sounds entails the formation of multiple representations of sound spectrograms with different degrees of spectral and temporal resolution. The cortex derives these multi-resolution representations through frequency-specific neural processing channels and through the combined analysis of the spectral and temporal modulations in the spectrogram. Furthermore, our findings suggest that a spectral-temporal resolution trade-off may govern the modulation tuning of neuronal populations throughout the auditory cortex. Specifically, our fMRI results suggest that neuronal populations in posterior/dorsal auditory regions preferably encode coarse spectral information with high temporal precision. Vice-versa, neuronal populations in anterior/ventral auditory regions preferably encode fine-grained spectral information with low temporal precision. We propose that such a multi-resolution analysis may be crucially relevant for flexible and behaviorally-relevant sound processing and may constitute one of the computational underpinnings of functional specialization in auditory cortex.

摘要

功能神经影像学研究提供了关于自然声音(如人类声音和言语、动物叫声、环境声音)在人脑中引发的反应模式的详细观察结果。然而,这些观察结果背后的计算和表征机制在很大程度上仍然未知。在这里,我们将高空间分辨率(3和7特斯拉)功能磁共振成像(fMRI)与计算建模相结合,以揭示自然声音在人脑中是如何被表征的。我们比较了声音表征的竞争模型,并选择了最能准确预测fMRI对自然声音反应模式的模型。我们的结果表明,自然声音的皮层编码需要形成具有不同程度频谱和时间分辨率的声音频谱图的多种表征。皮层通过特定频率的神经处理通道以及通过对频谱图中频谱和时间调制的联合分析来获得这些多分辨率表征。此外,我们的研究结果表明,频谱 - 时间分辨率的权衡可能支配整个听觉皮层中神经元群体的调制调谐。具体而言,我们的fMRI结果表明,后/背侧听觉区域的神经元群体优选以高时间精度编码粗略的频谱信息。反之,前/腹侧听觉区域的神经元群体优选以低时间精度编码细粒度的频谱信息。我们提出,这种多分辨率分析可能与灵活且与行为相关的声音处理至关重要相关,并且可能构成听觉皮层功能特化的计算基础之一。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d6/3879146/2220694fa883/pcbi.1003412.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验