Suppr超能文献

在马里开展小型整群抽样调查及采用整群LQAS设计来估计地方层面疫苗接种覆盖率的情况。

Performance of small cluster surveys and the clustered LQAS design to estimate local-level vaccination coverage in Mali.

作者信息

Minetti Andrea, Riera-Montes Margarita, Nackers Fabienne, Roederer Thomas, Koudika Marie Hortense, Sekkenes Johanne, Taconet Aurore, Fermon Florence, Touré Albouhary, Grais Rebecca F, Checchi Francesco

机构信息

Epicentre, Paris, France.

出版信息

Emerg Themes Epidemiol. 2012 Oct 12;9(1):6. doi: 10.1186/1742-7622-9-6.

Abstract

BACKGROUND

Estimation of vaccination coverage at the local level is essential to identify communities that may require additional support. Cluster surveys can be used in resource-poor settings, when population figures are inaccurate. To be feasible, cluster samples need to be small, without losing robustness of results. The clustered LQAS (CLQAS) approach has been proposed as an alternative, as smaller sample sizes are required.

METHODS

We explored (i) the efficiency of cluster surveys of decreasing sample size through bootstrapping analysis and (ii) the performance of CLQAS under three alternative sampling plans to classify local VC, using data from a survey carried out in Mali after mass vaccination against meningococcal meningitis group A.

RESULTS

VC estimates provided by a 10 × 15 cluster survey design were reasonably robust. We used them to classify health areas in three categories and guide mop-up activities: i) health areas not requiring supplemental activities; ii) health areas requiring additional vaccination; iii) health areas requiring further evaluation. As sample size decreased (from 10 × 15 to 10 × 3), standard error of VC and ICC estimates were increasingly unstable. Results of CLQAS simulations were not accurate for most health areas, with an overall risk of misclassification greater than 0.25 in one health area out of three. It was greater than 0.50 in one health area out of two under two of the three sampling plans.

CONCLUSIONS

Small sample cluster surveys (10 × 15) are acceptably robust for classification of VC at local level. We do not recommend the CLQAS method as currently formulated for evaluating vaccination programmes.

摘要

背景

在地方层面估计疫苗接种覆盖率对于确定可能需要额外支持的社区至关重要。在人口数据不准确且资源匮乏的情况下,可采用整群抽样调查。为确保可行性,整群样本需较小,同时又不能损失结果的稳健性。已有人提出采用整群LQAS(CLQAS)方法作为替代方案,因为该方法所需样本量较小。

方法

我们利用在马里开展的针对A群脑膜炎球菌性脑膜炎大规模疫苗接种后的一项调查数据,探讨了(i)通过自抽样分析来减少样本量的整群抽样调查的效率,以及(ii)在三种替代抽样计划下CLQAS用于对地方疫苗接种覆盖率进行分类的性能。

结果

由10×15整群抽样调查设计提供的疫苗接种覆盖率估计值具有合理的稳健性。我们用这些估计值将卫生区域分为三类,并指导补充接种活动:i)不需要补充活动的卫生区域;ii)需要额外疫苗接种的卫生区域;iii)需要进一步评估的卫生区域。随着样本量减小(从10×15降至10×3),疫苗接种覆盖率和组内相关系数估计值的标准误差越来越不稳定。CLQAS模拟结果在大多数卫生区域并不准确,在三个卫生区域中有一个区域的总体误分类风险大于0.25。在三种抽样计划中的两种计划下,在两个卫生区域中有一个区域的误分类风险大于0.50。

结论

小样本整群抽样调查(10×15)对于在地方层面进行疫苗接种覆盖率分类具有可接受的稳健性。我们不建议将目前制定的CLQAS方法用于评估疫苗接种计划。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5331/3502089/f7996c3b00e4/1742-7622-9-6-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验