Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín.
Appl Environ Microbiol. 2012 Dec;78(24):8784-94. doi: 10.1128/AEM.02558-12. Epub 2012 Oct 12.
Bioprocesses conducted under conditions with restricted O(2) supply are increasingly exploited for the synthesis of reduced biochemicals using different biocatalysts. The model facultative anaerobe Escherichia coli has elaborate sensing and signal transduction mechanisms for redox control in response to the availability of O(2) and other electron acceptors. The ArcBA two-component system consists of ArcB, a membrane-associated sensor kinase, and ArcA, the cognate response regulator. The tripartite hybrid kinase ArcB possesses a transmembrane, a PAS, a primary transmitter (H1), a receiver (D1), and a phosphotransfer (H2) domain. Metabolic fluxes were compared under anoxic conditions in a wild-type E. coli strain, its ΔarcB derivative, and two partial arcB deletion mutants in which ArcB lacked either the H1 domain or the PAS-H1-D1 domains. These analyses revealed that elimination of different segments in ArcB determines a distinctive distribution of d-glucose catabolic fluxes, different from that observed in the ΔarcB background. Metabolite profiles, enzyme activity levels, and gene expression patterns were also investigated in these strains. Relevant alterations were observed at the P-enol-pyruvate/pyruvate and acetyl coenzyme A metabolic nodes, and the formation of reduced fermentation metabolites, such as succinate, d-lactate, and ethanol, was favored in the mutant strains to different extents compared to the wild-type strain. These phenotypic traits were associated with altered levels of the enzymatic activities operating at these nodes, as well as with elevated NADH/NAD(+) ratios. Thus, targeted modification of global regulators to obtain different metabolic flux distributions under anoxic conditions is emerging as an attractive tool for metabolic engineering purposes.
在供氧受限的条件下进行的生物过程越来越多地被用于使用不同生物催化剂合成还原型生物化学物质。模式兼性厌氧菌大肠杆菌(Escherichia coli)具有精细的氧化还原控制感应和信号转导机制,以响应 O(2) 和其他电子受体的可用性。ArcBA 双组分系统由 ArcB(一种膜相关的传感器激酶)和 ArcA(同源响应调节剂)组成。三部分混合激酶 ArcB 具有跨膜、PAS、初级传输器 (H1)、接收器 (D1) 和磷酸转移 (H2) 结构域。在野生型大肠杆菌菌株、其ΔarcB 衍生物以及缺失 ArcB 的 H1 结构域或 PAS-H1-D1 结构域的两个部分 arcB 缺失突变体中,在缺氧条件下比较了代谢通量。这些分析表明,ArcB 中不同片段的消除决定了 d-葡萄糖分解代谢通量的独特分布,与在ΔarcB 背景下观察到的不同。还在这些菌株中研究了代谢物谱、酶活性水平和基因表达模式。在 P-烯醇丙酮酸/丙酮酸和乙酰辅酶 A 代谢节点以及还原发酵代谢物(如琥珀酸、d-乳酸和乙醇)的形成方面观察到相关的改变,与野生型菌株相比,突变菌株在不同程度上有利于形成还原发酵代谢物。这些表型特征与这些节点上操作的酶活性水平的改变以及 NADH/NAD(+) 比值的升高有关。因此,针对全局调节剂进行有针对性的修饰以在缺氧条件下获得不同的代谢通量分布,正在成为代谢工程目的的一种有吸引力的工具。