Department of Pathology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
Hum Mol Genet. 2013 Jan 15;22(2):328-44. doi: 10.1093/hmg/dds431. Epub 2012 Oct 12.
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most frequent known cause of late-onset Parkinson's disease (PD). To explore the therapeutic potential of small molecules targeting the LRRK2 kinase domain, we characterized two LRRK2 kinase inhibitors, TTT-3002 and LRRK2-IN1, for their effects against LRRK2 activity in vitro and in Caenorhabditis elegans models of LRRK2-linked neurodegeneration. TTT-3002 and LRRK2-IN1 potently inhibited in vitro kinase activity of LRRK2 wild-type and mutant proteins, attenuated phosphorylation of cellular LRRK2 and rescued neurotoxicity of mutant LRRK2 in transfected cells. To establish whether LRRK2 kinase inhibitors can mitigate pathogenesis caused by different mutations including G2019S and R1441C located within and outside of the LRRK2 kinase domain, respectively, we evaluated effects of TTT-3002 and LRRK2-IN1 against R1441C- and G2019S-induced neurodegeneration in C. elegans models. TTT-3002 and LRRK2-IN1 rescued the behavioral deficit characteristic of dopaminergic impairment in transgenic C. elegans expressing human R1441C- and G2019S-LRRK2. The inhibitors displayed nanomolar to low micromolar rescue potency when administered either pre-symptomatically or post-symptomatically, indicating both prevention and reversal of the dopaminergic deficit. The same treatments also led to long-lasting prevention and rescue of neurodegeneration. In contrast, TTT-3002 and LRRK2-IN1 were ineffective against the neurodegenerative phenotype in transgenic worms carrying the inhibitor-resistant A2016T mutation of LRRK2, suggesting that they elicit neuroprotective effects in vivo by targeting LRRK2 specifically. Our findings indicate that the LRRK2 kinase activity is critical for neurodegeneration caused by R1441C and G2019S mutations, suggesting that kinase inhibition of LRRK2 may represent a promising therapeutic strategy for PD.
LRRK2 中的突变是导致晚发性帕金森病(PD)最常见的已知原因。为了探索针对 LRRK2 激酶结构域的小分子治疗潜力,我们对两种 LRRK2 激酶抑制剂 TTT-3002 和 LRRK2-IN1 进行了鉴定,以评估它们在体外和 LRRK2 相关神经退行性变的秀丽隐杆线虫模型中的作用。TTT-3002 和 LRRK2-IN1 能够强烈抑制 LRRK2 野生型和突变蛋白的体外激酶活性,减弱细胞内 LRRK2 的磷酸化,并挽救转染细胞中突变 LRRK2 的神经毒性。为了确定 LRRK2 激酶抑制剂是否可以减轻由不同突变引起的发病机制,包括分别位于 LRRK2 激酶结构域内外的 G2019S 和 R1441C,我们评估了 TTT-3002 和 LRRK2-IN1 对 R1441C 和 G2019S 诱导的秀丽隐杆线虫模型中神经退行性变的影响。TTT-3002 和 LRRK2-IN1 挽救了表达人 R1441C 和 G2019S-LRRK2 的转基因秀丽隐杆线虫中多巴胺能损伤的行为缺陷。当在症状前或症状后给予这些抑制剂时,它们显示出纳米摩尔至低微摩尔的挽救效力,表明既可以预防又可以逆转多巴胺能缺陷。相同的治疗方法还导致神经退行性变的长期预防和挽救。相比之下,TTT-3002 和 LRRK2-IN1 对携带抑制剂抗性 A2016T 突变的 LRRK2 的转基因蠕虫的神经退行性表型无效,这表明它们通过特异性靶向 LRRK2 在体内产生神经保护作用。我们的研究结果表明,LRRK2 激酶活性对于 R1441C 和 G2019S 突变引起的神经退行性变至关重要,这表明 LRRK2 的激酶抑制可能代表 PD 的一种有前途的治疗策略。