Johnson William M, Yao Chen, Siedlak Sandra L, Wang Wenzhang, Zhu Xiongwei, Caldwell Guy A, Wilson-Delfosse Amy L, Mieyal John J, Chen Shu G
Department of Pharmacology and.
Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA.
Hum Mol Genet. 2015 Mar 1;24(5):1322-35. doi: 10.1093/hmg/ddu542. Epub 2014 Oct 29.
Parkinson's disease (PD) is characterized by selective degeneration of dopaminergic neurons. Although the etiology of PD remains incompletely understood, oxidative stress has been implicated as an important contributor in the development of PD. Oxidative stress can lead to oxidation and functional perturbation of proteins critical to neuronal survival. Glutaredoxin 1 (Grx1) is an evolutionally conserved antioxidant enzyme that repairs protein oxidation by reversing the oxidative modification of cysteine known as S-glutathionylation. We aimed to explore the regulatory role of Grx1 in PD. We first examined the levels of Grx1 in postmortem midbrain samples from PD patients, and observed that Grx1 content is decreased in PD, specifically within the dopaminergic neurons. We subsequently investigated the potential role of Grx1 deficiency in PD pathogenesis by examining the consequences of loss of the Caenorhabditis elegans Grx1 homolog in well-established worm models of familial PD caused by overexpression of pathogenic human LRRK2 mutants G2019S or R1441C. We found that loss of the Grx1 homolog led to significant exacerbation of the neurodegenerative phenotype in C. elegans overexpressing the human LRRK2 mutants. Re-expression in the dopaminergic neurons of the active, but not a catalytically inactive form of the Grx1 homolog rescued the exacerbated phenotype. Loss of the Grx1 homolog also exacerbated the neurodegenerative phenotype in other C. elegans models, including overexpression of human α-synuclein and overexpression of tyrosine hydroxylase (a model of sporadic PD). Therefore, our results reveal a novel neuroprotective role of glutaredoxin against dopaminergic neurodegeneration in models of familial and sporadic PD.
帕金森病(PD)的特征是多巴胺能神经元的选择性退化。尽管PD的病因仍未完全明确,但氧化应激被认为是PD发展的重要因素。氧化应激可导致对神经元存活至关重要的蛋白质发生氧化和功能紊乱。谷氧还蛋白1(Grx1)是一种进化上保守的抗氧化酶,它通过逆转称为S-谷胱甘肽化的半胱氨酸氧化修饰来修复蛋白质氧化。我们旨在探讨Grx1在PD中的调节作用。我们首先检测了PD患者死后中脑样本中Grx1的水平,观察到PD中Grx1含量降低,特别是在多巴胺能神经元内。随后,我们通过检测秀丽隐杆线虫Grx1同源物缺失在由致病性人类LRRK2突变体G2019S或R1441C过表达引起的家族性PD成熟线虫模型中的后果,研究了Grx1缺乏在PD发病机制中的潜在作用。我们发现,Grx1同源物的缺失导致过表达人类LRRK2突变体的秀丽隐杆线虫神经退行性表型显著加重。在多巴胺能神经元中重新表达活性形式而非催化无活性形式的Grx1同源物可挽救加重的表型。Grx1同源物的缺失在其他秀丽隐杆线虫模型中也加重了神经退行性表型,包括人类α-突触核蛋白过表达和酪氨酸羟化酶过表达(散发性PD模型)。因此,我们的结果揭示了谷氧还蛋白在家族性和散发性PD模型中对多巴胺能神经退行性变的一种新的神经保护作用。