Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany.
Mol Microbiol. 2012 Dec;86(6):1482-9. doi: 10.1111/mmi.12070. Epub 2012 Nov 5.
In bacterial habitats, the ability to follow spatial gradients of environmental factors that affect growth and survival can be largely advantageous. The bacterial strategy for unidirectional chemotactic movement in gradients of typical attractants or repellents, such as nutrients or toxins, is well understood. Optimal levels of other factors, however, may be found at intermediate points of a gradient and thus require a bidirectional tactic movement towards the optimum. Here we investigate the chemotactic response of Escherichia coli to pH as an example of such bidirectional taxis. We confirm that E. coli uses chemotaxis to avoid both extremes of low and high pH and demonstrate that the sign of the response is inverted from base-seeking to acid-seeking at a well-defined value of pH. Such inversion is enabled by opposing pH sensing by the two major chemoreceptors, Tar and Tsr, such that the relative strength of the response is modulated by adaptive receptor methylation. We further demonstrate that the inversion point of the pH response can be adjusted in response to changes in the cell density.
在细菌栖息地中,能够追踪影响生长和存活的环境因素的空间梯度,这在很大程度上是有利的。细菌在典型的趋化性物质或抑制剂(如营养物或毒素)的梯度中进行单向趋化运动的策略已被充分理解。然而,其他因素的最佳水平可能出现在梯度的中间点,因此需要向最优水平进行双向战术运动。在这里,我们以 pH 为例,研究了大肠杆菌的趋化反应,以此为例说明这种双向趋性。我们证实,大肠杆菌利用趋化作用来避免低 pH 和高 pH 的极端情况,并证明响应的符号在 pH 值的明确定义值处从碱性寻求变为酸性寻求。这种反转是由两个主要化学感受器 Tar 和 Tsr 进行相反的 pH 感应所实现的,使得响应的相对强度由适应性受体甲基化来调节。我们进一步证明,pH 响应的反转点可以根据细胞密度的变化进行调整。