Suppr超能文献

大肠杆菌化学感受器对苯酚的感应:一种非经典机制。

Phenol sensing by Escherichia coli chemoreceptors: a nonclassical mechanism.

机构信息

Biology Department, University of Utah, Salt Lake City, UT 84112, USA.

出版信息

J Bacteriol. 2011 Dec;193(23):6597-604. doi: 10.1128/JB.05987-11. Epub 2011 Sep 30.

Abstract

The four transmembrane chemoreceptors of Escherichia coli sense phenol as either an attractant (Tar) or a repellent (Tap, Trg, and Tsr). In this study, we investigated the Tar determinants that mediate its attractant response to phenol and the Tsr determinants that mediate its repellent response to phenol. Tar molecules with lesions in the aspartate-binding pocket of the periplasmic domain, with a foreign periplasmic domain (from Tsr or from several Pseudomonas chemoreceptors), or lacking nearly the entire periplasmic domain still mediated attractant responses to phenol. Similarly, Tar molecules with the cytoplasmic methylation and kinase control domains of Tsr still sensed phenol as an attractant. Additional hybrid receptors with signaling elements from both Tar and Tsr indicated that the transmembrane (TM) helices and HAMP domain determined the sign of the phenol-sensing response. Several amino acid replacements in the HAMP domain of Tsr, particularly attractant-mimic signaling lesions at residue E248, converted Tsr to an attractant sensor of phenol. These findings suggest that phenol may elicit chemotactic responses by diffusing into the cytoplasmic membrane and perturbing the structural stability or position of the TM bundle helices, in conjunction with structural input from the HAMP domain. We conclude that behavioral responses to phenol, and perhaps to temperature, cytoplasmic pH, and glycerol, as well, occur through a general sensing mechanism in chemoreceptors that detects changes in the structural stability or dynamic behavior of a receptor signaling element. The structurally sensitive target for phenol is probably the TM bundle, but other behaviors could target other receptor elements.

摘要

大肠杆菌的四个跨膜化学感受器感知苯酚为吸引剂(Tar)或排斥剂(Tap、Trg 和 Tsr)。在这项研究中,我们研究了介导 Tar 对苯酚的吸引反应的决定因素,以及介导 Tsr 对苯酚的排斥反应的决定因素。在 Tar 分子的周质域的天冬氨酸结合口袋中有损伤、有外来的周质域(来自 Tsr 或几个假单胞菌的化学感受器)、或几乎缺乏整个周质域的 Tar 分子仍介导对苯酚的吸引反应。同样,具有 Tsr 的细胞质甲基化和激酶控制结构域的 Tar 分子仍然感知苯酚为吸引剂。来自 Tar 和 Tsr 的信号元件的额外混合受体表明,跨膜(TM)螺旋和 HAMP 结构域决定了苯酚感应反应的信号。Tsr 的 HAMP 结构域中的几个氨基酸替换,特别是在残基 E248 处的吸引剂模拟信号损伤,将 Tsr 转化为苯酚的吸引剂传感器。这些发现表明,苯酚可能通过扩散到细胞质膜并扰乱 TM 束螺旋的结构稳定性或位置,与 HAMP 结构域的结构输入一起,引发趋化反应。我们得出结论,对苯酚以及对温度、细胞质 pH 和甘油的行为反应可能通过化学感受器中的一般感应机制发生,该机制检测受体信号元件的结构稳定性或动态行为的变化。苯酚的结构敏感靶标可能是 TM 束,但其他行为可能针对其他受体元件。

相似文献

1
Phenol sensing by Escherichia coli chemoreceptors: a nonclassical mechanism.
J Bacteriol. 2011 Dec;193(23):6597-604. doi: 10.1128/JB.05987-11. Epub 2011 Sep 30.
2
Conformational suppression of inter-receptor signaling defects.
Proc Natl Acad Sci U S A. 2006 Jun 13;103(24):9292-7. doi: 10.1073/pnas.0602135103. Epub 2006 Jun 2.
3
Repellent response functions of the Trg and Tap chemoreceptors of Escherichia coli.
J Bacteriol. 1990 Jan;172(1):383-8. doi: 10.1128/jb.172.1.383-388.1990.
4
A Trigger Residue for Transmembrane Signaling in the Escherichia coli Serine Chemoreceptor.
J Bacteriol. 2015 Aug 1;197(15):2568-79. doi: 10.1128/JB.00274-15. Epub 2015 May 26.
5
Chimeric chemoreceptors in Escherichia coli: signaling properties of Tar-Tap and Tap-Tar hybrids.
J Bacteriol. 1998 Feb;180(4):914-20. doi: 10.1128/JB.180.4.914-920.1998.
6
Collaborative signaling by mixed chemoreceptor teams in Escherichia coli.
Proc Natl Acad Sci U S A. 2002 May 14;99(10):7060-5. doi: 10.1073/pnas.092071899. Epub 2002 Apr 30.
7
Mutational analysis of the connector segment in the HAMP domain of Tsr, the Escherichia coli serine chemoreceptor.
J Bacteriol. 2008 Oct;190(20):6676-85. doi: 10.1128/JB.00750-08. Epub 2008 Jul 11.
8
9
A zipped-helix cap potentiates HAMP domain control of chemoreceptor signaling.
Proc Natl Acad Sci U S A. 2018 Apr 10;115(15):E3519-E3528. doi: 10.1073/pnas.1721554115. Epub 2018 Mar 26.
10
Signaling by the Escherichia coli aspartate chemoreceptor Tar with a single cytoplasmic domain per dimer.
Science. 1996 Oct 18;274(5286):423-5. doi: 10.1126/science.274.5286.423.

引用本文的文献

1
Thermal shift assay to identify ligands for bacterial sensor proteins.
FEMS Microbiol Rev. 2025 Jan 14;49. doi: 10.1093/femsre/fuaf033.
2
Insights into Chemoreceptor MCP2201-Sensing D-Malate.
Int J Mol Sci. 2025 May 20;26(10):4902. doi: 10.3390/ijms26104902.
3
Coordinated regulation of chemotaxis and resistance to copper by CsoR in .
Elife. 2025 Apr 8;13:RP100914. doi: 10.7554/eLife.100914.
4
Structural and functional diversity of sensor domains in bacterial transmembrane receptors.
Trends Microbiol. 2025 Jul;33(7):796-809. doi: 10.1016/j.tim.2025.02.019. Epub 2025 Mar 21.
5
An atlas of metabolites driving chemotaxis in prokaryotes.
Nat Commun. 2025 Feb 1;16(1):1242. doi: 10.1038/s41467-025-56410-y.
6
Synthetic β-d-Glucuronides: Substrates for Exploring Glucuronide Degradation by Human Gut Bacteria.
ACS Omega. 2024 Dec 20;10(1):1419-1428. doi: 10.1021/acsomega.4c09036. eCollection 2025 Jan 14.
7
Attractant and repellent induce opposing changes in the four-helix bundle ligand-binding domain of a bacterial chemoreceptor.
PLoS Biol. 2023 Dec 11;21(12):e3002429. doi: 10.1371/journal.pbio.3002429. eCollection 2023 Dec.
8
Discovery of a New Chemoeffector for Chemoreceptor Tsr and Identification of a Molecular Mechanism of Repellent Sensing.
ACS Bio Med Chem Au. 2022 Mar 18;2(4):386-394. doi: 10.1021/acsbiomedchemau.1c00055. eCollection 2022 Aug 17.
9
The Wsp system of links surface sensing and cell envelope stress.
Proc Natl Acad Sci U S A. 2022 May 3;119(18):e2117633119. doi: 10.1073/pnas.2117633119. Epub 2022 Apr 27.
10
Noncanonical Sensing Mechanisms for Bacillus subtilis Chemoreceptors.
J Bacteriol. 2022 Apr 19;204(4):e0002722. doi: 10.1128/jb.00027-22. Epub 2022 Mar 24.

本文引用的文献

1
2
Biphasic control logic of HAMP domain signalling in the Escherichia coli serine chemoreceptor.
Mol Microbiol. 2011 May;80(3):596-611. doi: 10.1111/j.1365-2958.2011.07577.x. Epub 2011 Feb 24.
4
Signaling mechanisms of HAMP domains in chemoreceptors and sensor kinases.
Annu Rev Microbiol. 2010;64:101-22. doi: 10.1146/annurev.micro.112408.134215.
5
Reprogramming bacteria to seek and destroy an herbicide.
Nat Chem Biol. 2010 Jun;6(6):464-70. doi: 10.1038/nchembio.369. Epub 2010 May 9.
6
Structure of concatenated HAMP domains provides a mechanism for signal transduction.
Structure. 2010 Mar 14;18(4):436-48. doi: 10.1016/j.str.2010.01.013.
7
Comprehensive analysis of HAMP domains: implications for transmembrane signal transduction.
J Mol Biol. 2010 Apr 16;397(5):1156-74. doi: 10.1016/j.jmb.2010.02.031. Epub 2010 Feb 23.
8
Thermosensing function of the Escherichia coli redox sensor Aer.
J Bacteriol. 2010 Mar;192(6):1740-3. doi: 10.1128/JB.01219-09. Epub 2010 Jan 22.
10
Mutational analyses of HAMP helices suggest a dynamic bundle model of input-output signalling in chemoreceptors.
Mol Microbiol. 2009 Sep;73(5):801-14. doi: 10.1111/j.1365-2958.2009.06819.x. Epub 2009 Jul 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验