Suppr超能文献

基于图谱的几何二分聚类算法。

A graph spectrum based geometric biclustering algorithm.

机构信息

Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong.

出版信息

J Theor Biol. 2013 Jan 21;317:200-11. doi: 10.1016/j.jtbi.2012.10.012. Epub 2012 Oct 16.

Abstract

Biclustering is capable of performing simultaneous clustering on two dimensions of a data matrix and has many applications in pattern classification. For example, in microarray experiments, a subset of genes is co-expressed in a subset of conditions, and biclustering algorithms can be used to detect the coherent patterns in the data for further analysis of function. In this paper, we present a graph spectrum based geometric biclustering (GSGBC) algorithm. In the geometrical view, biclusters can be seen as different linear geometrical patterns in high dimensional spaces. Based on this, the modified Hough transform is used to find the Hough vector (HV) corresponding to sub-bicluster patterns in 2D spaces. A graph can be built regarding each HV as a node. The graph spectrum is utilized to identify the eigengroups in which the sub-biclusters are grouped naturally to produce larger biclusters. Through a comparative study, we find that the GSGBC achieves as good a result as GBC and outperforms other kinds of biclustering algorithms. Also, compared with the original geometrical biclustering algorithm, it reduces the computing time complexity significantly. We also show that biologically meaningful biclusters can be identified by our method from real microarray gene expression data.

摘要

分群分析能够同时对数据矩阵的两个维度进行聚类,在模式分类中有许多应用。例如,在微阵列实验中,一小部分基因在一小部分条件下共同表达,分群分析算法可以用于检测数据中的一致模式,以便进一步分析功能。在本文中,我们提出了一种基于图频谱的几何分群(GSGBC)算法。从几何角度来看,分群可以看作是高维空间中不同的线性几何模式。基于此,我们使用改进的霍夫变换来寻找 2D 空间中子分群模式对应的霍夫向量(HV)。可以为每个 HV 构建一个图作为节点。利用图频谱来识别特征子群,这些子群自然地分组形成更大的分群。通过比较研究,我们发现 GSGBC 与 GBC 取得了相同的效果,并且优于其他类型的分群算法。此外,与原始的几何分群算法相比,它显著降低了计算时间复杂度。我们还表明,通过我们的方法可以从真实的微阵列基因表达数据中识别出具有生物学意义的分群。

相似文献

1
A graph spectrum based geometric biclustering algorithm.基于图谱的几何二分聚类算法。
J Theor Biol. 2013 Jan 21;317:200-11. doi: 10.1016/j.jtbi.2012.10.012. Epub 2012 Oct 16.
7
Possibilistic approach for biclustering microarray data.用于双聚类微阵列数据的可能性方法。
Comput Biol Med. 2007 Oct;37(10):1426-36. doi: 10.1016/j.compbiomed.2007.01.005. Epub 2007 Mar 8.
8

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验