Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Korea.
Department of Physics, Korea University, Seoul, 02841, Korea.
Nat Commun. 2023 Apr 4;14(1):1878. doi: 10.1038/s41467-023-37467-z.
Imaging an object embedded within a scattering medium requires the correction of complex sample-induced wave distortions. Existing approaches have been designed to resolve them by optimizing signal waves recorded in each 2D image. Here, we present a volumetric image reconstruction framework that merges two fundamental degrees of freedom, the wavelength and propagation angles of light waves, based on the object momentum conservation principle. On this basis, we propose methods for exploiting the correlation of signal waves from volumetric images to better cope with multiple scattering. By constructing experimental systems scanning both wavelength and illumination angle of the light source, we demonstrated a 32-fold increase in the use of signal waves compared with that of existing 2D-based approaches and achieved ultrahigh volumetric resolution (lateral resolution: 0.41 [Formula: see text], axial resolution: 0.60 [Formula: see text]) even within complex scattering medium owing to the optimal coherent use of the broad spectral bandwidth (225 nm).
对嵌入在散射介质中的物体进行成像需要校正复杂的样品诱导波失真。现有的方法旨在通过优化在每个 2D 图像中记录的信号波来解决这些问题。在这里,我们提出了一种基于物体动量守恒原理的体积图像重建框架,它融合了两个基本自由度,即光波的波长和传播角。在此基础上,我们提出了利用体积图像中信号波相关性的方法,以更好地应对多次散射。通过构建同时扫描光源波长和照明角度的实验系统,我们展示了与现有基于 2D 的方法相比,信号波的利用率提高了 32 倍,并且由于对宽光谱带宽(225nm)的最佳相干利用,即使在复杂的散射介质中也实现了超高的体积分辨率(横向分辨率:0.41μm,轴向分辨率:0.60μm)。