Institut de Biologie de l'École Normale Supérieure, École Normale Supérieure, CNRS, INSERM, Université Paris Sciences et Lettres, Paris 75005, France.
Laboratoire Kastler Brossel, École Normale Supérieure-Université Paris Sciences et Lettres, CNRS, Sorbonne Université, Collège de France, Paris 75005, France.
Proc Natl Acad Sci U S A. 2023 Dec 19;120(51):e2305593120. doi: 10.1073/pnas.2305593120. Epub 2023 Dec 15.
Nonlinear fluorescence microscopy promotes in-vivo optical imaging of cellular structure at diffraction-limited resolution deep inside scattering biological tissues. Active compensation of tissue-induced aberrations and light scattering through adaptive wavefront correction further extends the accessible depth by restoring high resolution at large depth. However, those corrections are only valid over a very limited field of view within the angular memory effect. To overcome this limitation, we introduce an acousto-optic light modulation technique for fluorescence imaging with simultaneous wavefront correction at pixel scan speed. Biaxial wavefront corrections are first learned by adaptive optimization at multiple locations in the image field. During image acquisition, the learned corrections are then switched on the fly according to the position of the excitation focus during the raster scan. The proposed microscope is applied to in vivo transcranial neuron imaging and demonstrates multi-patch correction of thinned skull-induced aberrations and scattering at 40-kHz data acquisition speed.
非线性荧光显微镜促进了在散射生物组织深处以衍射极限分辨率对细胞结构进行体内光学成像。通过自适应波前校正来主动补偿组织诱导的像差和光散射,进一步通过在大深度恢复高分辨率来扩展可及深度。然而,这些校正仅在角记忆效应内的非常有限的视场范围内有效。为了克服这一限制,我们引入了一种声光光调制技术,用于荧光成像,并具有像素扫描速度的同时波前校正。双轴波前校正首先通过在图像场中的多个位置进行自适应优化来学习。在图像采集期间,根据光栅扫描期间激发焦点的位置,实时切换学习到的校正。所提出的显微镜应用于活体颅神经成像,并证明了在 40-kHz 数据采集速度下对变薄颅骨引起的像差和散射进行多补丁校正。