Suppr超能文献

新生大鼠睡眠中快速的胡须运动。

Rapid whisker movements in sleeping newborn rats.

机构信息

Department of Psychology, Program in Behavioral and Cognitive Neuroscience, The University of Iowa, Iowa City, IA 52242, USA.

出版信息

Curr Biol. 2012 Nov 6;22(21):2075-80. doi: 10.1016/j.cub.2012.09.009. Epub 2012 Oct 18.

Abstract

Spontaneous activity in the sensory periphery drives infant brain activity and is thought to contribute to the formation of retinotopic and somatotopic maps. In infant rats during active (or REM) sleep, brainstem-generated spontaneous activity triggers hundreds of thousands of skeletal muscle twitches each day; sensory feedback from the resulting limb movements is a primary activator of forebrain activity. The rodent whisker system, with its precise isomorphic mapping of individual whiskers to discrete brain areas, has been a key contributor to our understanding of somatotopic maps and developmental plasticity. But although whisker movements are controlled by dedicated skeletal muscles, spontaneous whisker activity has not been entertained as a contributing factor to the development of this system. Here we report in 3- to 6-day-old rats that whiskers twitch rapidly and asynchronously during active sleep; furthermore, neurons in whisker thalamus exhibit bursts of activity that are tightly associated with twitches but occur infrequently during waking. Finally, we observed barrel-specific cortical activity during periods of twitching. This is the first report of self-generated, sleep-related twitches in the developing whisker system, a sensorimotor system that is unique for the precision with which it can be experimentally manipulated. The discovery of whisker twitching will allow us to attain a better understanding of the contributions of peripheral sensory activity to somatosensory integration and plasticity in the developing nervous system.

摘要

感觉外周的自发活动驱动婴儿大脑活动,并被认为有助于形成视网膜和躯体感觉图谱。在活跃(或 REM)睡眠期间的婴儿大鼠中,脑干产生的自发活动每天引发数十万次骨骼肌抽搐;由此产生的肢体运动的感觉反馈是大脑前活动的主要激活剂。啮齿动物胡须系统具有对单个胡须到离散脑区的精确同型映射,这是我们理解躯体感觉图谱和发育可塑性的主要贡献者。但是,尽管胡须运动由专门的骨骼肌控制,但自发的胡须活动并未被认为是该系统发育的一个因素。在这里,我们在 3 至 6 天大的大鼠中报告说,在活跃睡眠期间胡须快速且异步地抽搐;此外,胡须丘脑中的神经元表现出与抽搐紧密相关的活动爆发,但在清醒期间很少发生。最后,我们观察到在抽搐期间发生的桶状皮层特定的皮质活动。这是首次在发育中的胡须系统中报告自我产生的、与睡眠相关的抽搐,这是一种感觉运动系统,其独特之处在于它可以被精确地实验操纵。发现胡须抽搐将使我们能够更好地理解外周感觉活动对发育中的神经系统的躯体感觉整合和可塑性的贡献。

相似文献

1
Rapid whisker movements in sleeping newborn rats.
Curr Biol. 2012 Nov 6;22(21):2075-80. doi: 10.1016/j.cub.2012.09.009. Epub 2012 Oct 18.
2
Self-Generated Whisker Movements Drive State-Dependent Sensory Input to Developing Barrel Cortex.
Curr Biol. 2020 Jun 22;30(12):2404-2410.e4. doi: 10.1016/j.cub.2020.04.045. Epub 2020 May 14.
3
The Nature of the Sensory Input to the Neonatal Rat Barrel Cortex.
J Neurosci. 2016 Sep 21;36(38):9922-32. doi: 10.1523/JNEUROSCI.1781-16.2016.
4
Modelling the emergence of whisker barrels.
Elife. 2020 Sep 29;9:e55588. doi: 10.7554/eLife.55588.
6
Contribution of supragranular layers to sensory processing and plasticity in adult rat barrel cortex.
J Neurophysiol. 1998 Dec;80(6):3261-71. doi: 10.1152/jn.1998.80.6.3261.
7
Rapid plasticity follows whisker pairing in barrel cortex of the awake rat.
Exp Brain Res. 2007 Feb;177(1):1-14. doi: 10.1007/s00221-006-0644-y. Epub 2006 Aug 22.
8
Thalamocortical response transformation in the rat vibrissa/barrel system.
J Neurophysiol. 1989 Feb;61(2):311-30. doi: 10.1152/jn.1989.61.2.311.
9
Spatial gradients and inhibitory summation in the rat whisker barrel system.
J Neurophysiol. 1996 Jul;76(1):130-40. doi: 10.1152/jn.1996.76.1.130.
10
Active Sleep Promotes Coherent Oscillatory Activity in the Cortico-Hippocampal System of Infant Rats.
Cereb Cortex. 2020 Apr 14;30(4):2070-2082. doi: 10.1093/cercor/bhz223.

引用本文的文献

1
Development of spontaneous and sensory evoked network activity in rodent cerebral cortex .
Front Cell Neurosci. 2025 Aug 6;19:1648685. doi: 10.3389/fncel.2025.1648685. eCollection 2025.
2
Modulation of Hippocampal Sharp-Wave Ripples by Behavioral States and Body Movements in Head-Fixed Rodents.
eNeuro. 2025 Jul 28;12(7). doi: 10.1523/ENEURO.0012-25.2025. Print 2025 Jul.
3
Activity-dependent dendrite patterning in the postnatal barrel cortex.
Front Neural Circuits. 2024 May 17;18:1409993. doi: 10.3389/fncir.2024.1409993. eCollection 2024.
4
Network state transitions during cortical development.
Nat Rev Neurosci. 2024 Aug;25(8):535-552. doi: 10.1038/s41583-024-00824-y. Epub 2024 May 23.
5
Thalamocortical Dynamics during Rapid Eye Movement Sleep in the Mouse Somatosensory Pathway.
J Neurosci. 2024 Jun 19;44(25):e0158242024. doi: 10.1523/JNEUROSCI.0158-24.2024.
6
Arousal state transitions occlude sensory-evoked neurovascular coupling in neonatal mice.
Commun Biol. 2023 Jul 17;6(1):738. doi: 10.1038/s42003-023-05121-5.
7
Somatosensory-Evoked Early Sharp Waves in the Neonatal Rat Hippocampus.
Int J Mol Sci. 2023 May 13;24(10):8721. doi: 10.3390/ijms24108721.
8
The temporal structure of REM sleep shows minute-scale fluctuations across brain and body in mice and humans.
Proc Natl Acad Sci U S A. 2023 May 2;120(18):e2213438120. doi: 10.1073/pnas.2213438120. Epub 2023 Apr 24.
10
Spontaneous activity in whisker-innervating region of neonatal mouse trigeminal ganglion.
Sci Rep. 2022 Sep 29;12(1):16311. doi: 10.1038/s41598-022-20068-z.

本文引用的文献

1
Development and critical period plasticity of the barrel cortex.
Eur J Neurosci. 2012 May;35(10):1540-53. doi: 10.1111/j.1460-9568.2012.08075.x.
2
Thalamic network oscillations synchronize ontogenetic columns in the newborn rat barrel cortex.
Cereb Cortex. 2013 Jun;23(6):1299-316. doi: 10.1093/cercor/bhs103. Epub 2012 May 16.
3
The development of whisker control in rats in relation to locomotion.
Dev Psychobiol. 2012 Mar;54(2):151-68. doi: 10.1002/dev.20591. Epub 2011 Aug 23.
4
What can we get from 'barrels': the rodent barrel cortex as a model for studying the establishment of neural circuits.
Eur J Neurosci. 2011 Nov;34(10):1663-76. doi: 10.1111/j.1460-9568.2011.07892.x.
5
How do barrels form in somatosensory cortex?
Ann N Y Acad Sci. 2011 Apr;1225:119-29. doi: 10.1111/j.1749-6632.2011.06024.x.
6
Beyond dreams: do sleep-related movements contribute to brain development?
Front Neurol. 2010 Nov 1;1:140. doi: 10.3389/fneur.2010.00140. eCollection 2010.
7
Motor control by sensory cortex.
Science. 2010 Nov 26;330(6008):1240-3. doi: 10.1126/science.1195797.
9
Between molecules and experience: role of early patterns of coordinated activity for the development of cortical maps and sensory abilities.
Brain Res Rev. 2010 Sep;64(1):160-76. doi: 10.1016/j.brainresrev.2010.03.005. Epub 2010 Apr 8.
10
Neocortical activation of the hippocampus during sleep in infant rats.
J Neurosci. 2010 Mar 3;30(9):3438-49. doi: 10.1523/JNEUROSCI.4832-09.2010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验