Suppr超能文献

评估太赫兹波段的角膜水合传感:100GHz 的活体结果。

Assessment of corneal hydration sensing in the terahertz band: in vivo results at 100 GHz.

机构信息

Center for Advanced Surgical and Interventional Technology, Los Angeles, California 90095, USA.

出版信息

J Biomed Opt. 2012 Sep;17(9):97008-1. doi: 10.1117/1.JBO.17.9.097008.

Abstract

Terahertz corneal hydration sensing has shown promise in ophthalmology applications and was recently shown to be capable of detecting water concentration changes of about two parts in a thousand in ex vivo corneal tissues. This technology may be effective in patient monitoring during refractive surgery and for early diagnosis and treatment monitoring in diseases of the cornea. In this work, Fuchs dystrophy, cornea transplant rejection, and keratoconus are discussed, and a hydration sensitivity of about one part in a hundred is predicted to be needed to successfully distinguish between diseased and healthy tissues in these applications. Stratified models of corneal tissue reflectivity are developed and validated using ex vivo spectroscopy of harvested porcine corneas that are hydrated using polyethylene glycol solutions. Simulation of the cornea's depth-dependent hydration profile, from 0.01 to 100 THz, identifies a peak in intrinsic reflectivity contrast for sensing at 100 GHz. A 100 GHz hydration sensing system is evaluated alongside the current standard ultrasound pachymetry technique to measure corneal hydration in vivo in four rabbits. A hydration sensitivity, of three parts per thousand or better, was measured in all four rabbits under study. This work presents the first in vivo demonstration of remote corneal hydration sensing.

摘要

太赫兹角膜水合传感技术在眼科应用中显示出良好的前景,最近已被证明能够检测离体角膜组织中约千分之二的水浓度变化。这项技术可能对屈光手术中的患者监测以及角膜疾病的早期诊断和治疗监测有效。在这项工作中,讨论了 Fuchs 营养不良、角膜移植排斥和圆锥角膜,并预测需要大约百分之一的水合灵敏度才能成功区分这些应用中患病和健康组织。使用通过聚乙二醇溶液水合的收获的猪角膜的离体光谱学,开发和验证了角膜组织反射率的分层模型。模拟角膜的深度相关水合分布,从 0.01 到 100 THz,在 100 GHz 处确定了固有反射率对比感测的峰值。评估了 100 GHz 水合传感系统以及当前标准的超声测厚术技术,以在四只兔子体内测量角膜水合。在所有四只研究兔子中,均测量到千分之三或更好的水合灵敏度。这项工作首次在体内演示了远程角膜水合传感。

相似文献

1
Assessment of corneal hydration sensing in the terahertz band: in vivo results at 100 GHz.
J Biomed Opt. 2012 Sep;17(9):97008-1. doi: 10.1117/1.JBO.17.9.097008.
2
Terahertz sensing in corneal tissues.
J Biomed Opt. 2011 May;16(5):057003. doi: 10.1117/1.3575168.
3
Terahertz sensing of corneal hydration.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:3021-4. doi: 10.1109/IEMBS.2010.5626146.
4
In vivo sensing of rabbit cornea by terahertz technology.
J Biophotonics. 2021 Sep;14(9):e202100130. doi: 10.1002/jbio.202100130. Epub 2021 Jun 17.
8
Terahertz spectroscopy analysis of human corneal sublayers.
J Biomed Opt. 2021 Apr;26(4). doi: 10.1117/1.JBO.26.4.043011.
9
Monitoring corneal hydration with a mid-infrared (IR) laser.
Ocul Surf. 2015 Jan;13(1):43-6. doi: 10.1016/j.jtos.2014.08.003. Epub 2014 Oct 19.
10
Corneal Hydration Control during Ex Vivo Experimentation Using Poloxamers.
Curr Eye Res. 2020 Feb;45(2):111-117. doi: 10.1080/02713683.2019.1663387. Epub 2019 Sep 18.

引用本文的文献

2
Assessment of the general clinical condition and functional properties of the eyes of rabbits after THz irradiation.
Biomed Opt Express. 2025 Feb 13;16(3):1043-1061. doi: 10.1364/BOE.546147. eCollection 2025 Mar 1.
3
The Application of Terahertz Technology in Corneas and Corneal Diseases: A Systematic Review.
Bioengineering (Basel). 2025 Jan 8;12(1):45. doi: 10.3390/bioengineering12010045.
5
Terahertz spectroscopy analysis of human corneal sublayers.
J Biomed Opt. 2021 Apr;26(4). doi: 10.1117/1.JBO.26.4.043011.
6
Dielectric property measurements of corneal tissues for computational dosimetry of the eye in terahertz band and .
Biomed Opt Express. 2021 Feb 8;12(3):1295-1307. doi: 10.1364/BOE.412769. eCollection 2021 Mar 1.
7
Safety profiles of terahertz scanning in ophthalmology.
Sci Rep. 2021 Jan 28;11(1):2448. doi: 10.1038/s41598-021-82103-9.
8
Corneal hydration assessment indicator based on terahertz time domain spectroscopy.
Biomed Opt Express. 2020 Mar 18;11(4):2073-2084. doi: 10.1364/BOE.387826. eCollection 2020 Apr 1.
9
Biomedical optics applications of advanced lasers and nonlinear optics.
J Biomed Opt. 2020 Apr;25(4):1-9. doi: 10.1117/1.JBO.25.4.040902.
10
Investigation of water diffusion dynamics in corneal phantoms using terahertz time-domain spectroscopy.
Biomed Opt Express. 2020 Feb 7;11(3):1284-1297. doi: 10.1364/BOE.382826. eCollection 2020 Mar 1.

本文引用的文献

1
Effects of THz Exposure on Human Primary Keratinocyte Differentiation and Viability.
J Biol Phys. 2003 Jun;29(2-3):179-85. doi: 10.1023/A:1024492725782.
2
THz Exposure of Whole Blood for the Study of Biological Effects on Human Lymphocytes.
J Biol Phys. 2003 Jun;29(2-3):171-6. doi: 10.1023/A:1024440708943.
3
Catalogue of human tissue optical properties at terahertz frequencies.
J Biol Phys. 2003 Jun;29(2-3):123-8. doi: 10.1023/A:1024428406218.
4
In vivo terahertz imaging of rat skin burns.
J Biomed Opt. 2012 Apr;17(4):040503. doi: 10.1117/1.JBO.17.4.040503.
5
Terahertz sensing in corneal tissues.
J Biomed Opt. 2011 May;16(5):057003. doi: 10.1117/1.3575168.
6
Terahertz spectroscopy of liver cirrhosis: investigating the origin of contrast.
Phys Med Biol. 2010 Dec 21;55(24):7587-96. doi: 10.1088/0031-9155/55/24/013. Epub 2010 Nov 19.
7
Reflective terahertz imaging of porcine skin burns.
Opt Lett. 2008 Jun 1;33(11):1258-60. doi: 10.1364/ol.33.001258.
8
Materials for phantoms for terahertz pulsed imaging.
Phys Med Biol. 2004 Nov 7;49(21):N363-9. doi: 10.1088/0031-9155/49/21/n01.
9
Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo.
Br J Dermatol. 2004 Aug;151(2):424-32. doi: 10.1111/j.1365-2133.2004.06129.x.
10
Multispectral classification techniques for terahertz pulsed imaging: an example in histopathology.
Med Eng Phys. 2004 Jun;26(5):423-30. doi: 10.1016/j.medengphy.2004.02.011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验