Interdisciplinary Center for Neural Computation, The Hebrew University of Jerusalem.
Cogn Sci. 2012 Nov-Dec;36(8):1339-82. doi: 10.1111/cogs.12007. Epub 2012 Oct 24.
Localist models of spreading activation (SA) and models assuming distributed representations offer very different takes on semantic priming, a widely investigated paradigm in word recognition and semantic memory research. In this study, we implemented SA in an attractor neural network model with distributed representations and created a unified framework for the two approaches. Our models assume a synaptic depression mechanism leading to autonomous transitions between encoded memory patterns (latching dynamics), which account for the major characteristics of automatic semantic priming in humans. Using computer simulations, we demonstrated how findings that challenged attractor-based networks in the past, such as mediated and asymmetric priming, are a natural consequence of our present model's dynamics. Puzzling results regarding backward priming were also given a straightforward explanation. In addition, the current model addresses some of the differences between semantic and associative relatedness and explains how these differences interact with stimulus onset asynchrony in priming experiments.
局部扩散激活(SA)模型和分布式表示模型为语义启动提供了非常不同的解释,语义启动是词语识别和语义记忆研究中广泛研究的范式。在这项研究中,我们在具有分布式表示的吸引子神经网络模型中实现了 SA,并为这两种方法创建了一个统一的框架。我们的模型假设存在一种突触抑制机制,导致编码记忆模式之间的自主转换(锁存动力学),这解释了人类自动语义启动的主要特征。通过计算机模拟,我们展示了过去对基于吸引子的网络提出挑战的发现,例如中介和非对称启动,如何成为我们当前模型动力学的自然结果。对于反向启动的令人费解的结果,我们也给出了一个直接的解释。此外,当前模型解决了语义和联想相关性之间的一些差异,并解释了这些差异如何在启动实验中与刺激起始时的异步相互作用。