Suppr超能文献

聚乙二醇(PEG)密度对皮下给药后抗原呈递细胞(APCs)摄取和摄取颗粒的影响。

Effect of the poly(ethylene glycol) (PEG) density on the access and uptake of particles by antigen-presenting cells (APCs) after subcutaneous administration.

机构信息

Department of Chemical Engineering, University of Washington, Campus Box 351750, Seattle, Washington 98195, United States.

出版信息

Mol Pharm. 2012 Dec 3;9(12):3442-51. doi: 10.1021/mp300190g. Epub 2012 Nov 20.

Abstract

Lymphatic trafficking of particles to the secondary lymphoid organs, such as lymph nodes, and the cell types that particles access are critical factors that control the quality and quantity of immune responses. In this study, we evaluated the effect of PEGylation on the lymphatic trafficking and accumulation of particles in draining lymph nodes (dLNs) as well as the cell types that internalized particles. As a model system, 200 nm polystyrene (PS) particles were modified with different densities of poly(ethylene glycol) (PEG) and administered subcutaneously to mice. PEGylation enhanced the efficiency of particle drainage away from the injection site as well as the access of particles to dendritic cells (DCs). The accumulation of particles in dLNs was dependent on the PEG density. PEGylation also enhanced uptake by DCs while reducing internalization by B cells at the single cell level. Our results indicate that PEGylation facilitated the trafficking of particles to dLNs either through enhanced trafficking in lymphatic vessels or by enhanced internalization by migratory DCs. This study provides insight into utilizing PEGylated particles for the development of synthetic vaccines.

摘要

颗粒向二级淋巴器官(如淋巴结)的淋巴转运以及颗粒进入的细胞类型是控制免疫应答质量和数量的关键因素。在这项研究中,我们评估了聚乙二醇(PEG)化对颗粒在引流淋巴结(dLNs)中的淋巴转运和积累以及颗粒内化细胞类型的影响。作为模型系统,用不同密度的聚乙二醇(PEG)对 200nm 聚苯乙烯(PS)颗粒进行修饰,并皮下给药给小鼠。PEG 化增强了颗粒从注射部位排出以及颗粒进入树突状细胞(DC)的效率。颗粒在 dLNs 中的积累取决于 PEG 密度。PEG 化还增强了 DC 的摄取,同时降低了 B 细胞在单细胞水平上的内化。我们的结果表明,PEG 化通过增强淋巴管中的转运或通过增强迁移 DC 的内化,促进了颗粒向 dLNs 的转运。这项研究为开发合成疫苗提供了利用 PEG 化颗粒的见解。

相似文献

3
PEGylated cationic liposomes robustly augment vaccine-induced immune responses: Role of lymphatic trafficking and biodistribution.
J Control Release. 2012 Apr 10;159(1):135-42. doi: 10.1016/j.jconrel.2011.12.017. Epub 2011 Dec 29.
6
In vivo targeting of dendritic cells in lymph nodes with poly(propylene sulfide) nanoparticles.
J Control Release. 2006 May 1;112(1):26-34. doi: 10.1016/j.jconrel.2006.01.006. Epub 2006 Mar 10.
7
Nanoparticles target distinct dendritic cell populations according to their size.
Eur J Immunol. 2008 May;38(5):1404-13. doi: 10.1002/eji.200737984.
9
Differential uptake of nanoparticles and microparticles by pulmonary APC subsets induces discrete immunological imprints.
J Immunol. 2013 Nov 15;191(10):5278-90. doi: 10.4049/jimmunol.1203131. Epub 2013 Oct 11.
10
Size-dependent accumulation of particles in lysosomes modulates dendritic cell function through impaired antigen degradation.
Int J Nanomedicine. 2014 Aug 13;9:3885-902. doi: 10.2147/IJN.S64353. eCollection 2014.

引用本文的文献

1
Emerging strategies in lymph node-targeted nano-delivery systems for tumor immunotherapy.
Essays Biochem. 2025 Mar 28;69(2):EBC20253008. doi: 10.1042/EBC20253008.
2
Lymphoid organ-targeted nanomaterials for immunomodulation of cancer, inflammation, and beyond.
Chem Soc Rev. 2024 Jul 29;53(15):7657-7680. doi: 10.1039/d4cs00421c.
3
Transferrin-Bearing, Zein-Based Hybrid Lipid Nanoparticles for Drug and Gene Delivery to Prostate Cancer Cells.
Pharmaceutics. 2023 Nov 20;15(11):2643. doi: 10.3390/pharmaceutics15112643.
4
Application of Nano-Delivery Systems in Lymph Nodes for Tumor Immunotherapy.
Nanomicro Lett. 2023 Jun 3;15(1):145. doi: 10.1007/s40820-023-01125-2.
5
Gene-encoded nanoparticle vaccine platforms for in vivo assembly of multimeric antigen to promote adaptive immunity.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2023 Jul-Aug;15(4):e1880. doi: 10.1002/wnan.1880. Epub 2023 Feb 20.
7
Dual-responsive nanovaccine for cytosolic delivery of antigens to boost cellular immune responses and cancer immunotherapy.
Asian J Pharm Sci. 2022 Jul;17(4):583-595. doi: 10.1016/j.ajps.2022.05.004. Epub 2022 Jul 13.
8
Pulmonary Pharmacokinetics of Polymer Lung Surfactants Following Pharyngeal Administration in Mice.
Biomacromolecules. 2022 Jun 13;23(6):2471-2484. doi: 10.1021/acs.biomac.2c00221. Epub 2022 May 17.
9
Buccal and Sublingual Vaccines: A Review on Oral Mucosal Immunization and Delivery Systems.
Vaccines (Basel). 2021 Oct 14;9(10):1177. doi: 10.3390/vaccines9101177.
10
Revolutionizing polymer-based nanoparticle-linked vaccines for targeting respiratory viruses: A perspective.
Life Sci. 2021 Sep 1;280:119744. doi: 10.1016/j.lfs.2021.119744. Epub 2021 Jun 24.

本文引用的文献

2
PEGylated cationic liposomes robustly augment vaccine-induced immune responses: Role of lymphatic trafficking and biodistribution.
J Control Release. 2012 Apr 10;159(1):135-42. doi: 10.1016/j.jconrel.2011.12.017. Epub 2011 Dec 29.
3
In situ engineering of the lymph node microenvironment via intranodal injection of adjuvant-releasing polymer particles.
Proc Natl Acad Sci U S A. 2011 Sep 20;108(38):15745-50. doi: 10.1073/pnas.1105200108. Epub 2011 Sep 6.
4
Nano-sized drug-loaded micelles deliver payload to lymph node immune cells and prolong allograft survival.
J Control Release. 2011 Dec 10;156(2):154-60. doi: 10.1016/j.jconrel.2011.08.009. Epub 2011 Aug 12.
5
Covalently stabilized trimethyl chitosan-hyaluronic acid nanoparticles for nasal and intradermal vaccination.
J Control Release. 2011 Nov 30;156(1):46-52. doi: 10.1016/j.jconrel.2011.07.014. Epub 2011 Jul 20.
6
The role of the lymphatic system in vaccine trafficking and immune response.
Adv Drug Deliv Rev. 2011 Sep 10;63(10-11):909-22. doi: 10.1016/j.addr.2011.05.018. Epub 2011 Jun 15.
7
Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns.
Nat Rev Immunol. 2010 Nov;10(11):787-96. doi: 10.1038/nri2868. Epub 2010 Oct 15.
8
Administration routes affect the quality of immune responses: A cross-sectional evaluation of particulate antigen-delivery systems.
J Control Release. 2010 Nov 1;147(3):342-9. doi: 10.1016/j.jconrel.2010.08.012. Epub 2010 Aug 18.
9
Dendritic cell subsets in primary and secondary T cell responses at body surfaces.
Nat Immunol. 2009 Dec;10(12):1237-44. doi: 10.1038/ni.1822. Epub 2009 Nov 16.
10
Selective filtering of particles by the extracellular matrix: an electrostatic bandpass.
Biophys J. 2009 Sep 16;97(6):1569-77. doi: 10.1016/j.bpj.2009.07.009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验