Department of Bioengineering, University of Maryland, 8278 Paint Branch Dr, College Park, MD 20742, USA.
Biomater Sci. 2022 Dec 6;10(24):6992-7003. doi: 10.1039/d2bm00816e.
Lymph nodes (LNs) are highly structured lymphoid organs that compartmentalize B and T cells in the outer cortex and inner paracortex, respectively, and are supported by a collagen-rich reticular network. Tissue material properties like viscoelasticity and diffusion of materials within extracellular spaces and their implications on cellular behavior and therapeutic delivery have been a recent topic of investigation. Here, we developed a nanoparticle system to investigate the rheological properties, including pore size and viscoelasticity, through multiple particle tracking (MPT) combined with LN slice cultures. Dense coatings with polyethylene glycol (PEG) allow nanoparticles to diffuse within the LN extracellular spaces. Despite differences in function in B and T cell zones, we found that extracellular tissue properties and mesh spacing do not change significantly in the cortex and paracortex, though nanoparticle diffusion was slightly reduced in B cell zones. Interestingly, our data suggest that LN pore sizes are smaller than the previously predicted 10-20 μm, with pore sizes ranging from 500 nm-1.5 μm. Our studies also confirm that LNs exhibit viscoelastic properties, with an initial solid-like response followed by stress-relaxation at higher frequencies. Finally, we found that nanoparticle diffusion is dependent on LN location, with nanoparticles in skin draining LNs exhibiting a higher diffusion coefficient and pore size compared to mesenteric LNs. Our data shed new light onto LN interstitial tissue properties, pore size, and define surface chemistry parameters required for nanoparticles to diffuse within LN interstitium. Our studies also provide both a tool for studying LN interstitium and developing design criteria for nanoparticles targeting LN interstitial spaces.
淋巴结 (LNs) 是高度结构化的淋巴器官,分别在外皮质和内皮质区将 B 细胞和 T 细胞分隔开,并由富含胶原的网状网络支持。组织材料特性,如粘弹性和细胞外空间内物质的扩散及其对细胞行为和治疗传递的影响,是最近研究的一个主题。在这里,我们开发了一种纳米颗粒系统,通过与 LN 切片培养相结合的多粒子跟踪 (MPT) 来研究流变特性,包括孔径和粘弹性。具有聚乙二醇 (PEG) 的密集涂层允许纳米颗粒在 LN 细胞外空间内扩散。尽管 B 细胞区和 T 细胞区的功能不同,但我们发现细胞外组织特性和网格间距在外皮质和皮质区并没有显著变化,尽管纳米颗粒在 B 细胞区的扩散略有减少。有趣的是,我们的数据表明 LN 的孔径小于先前预测的 10-20 μm,孔径范围为 500nm-1.5μm。我们的研究还证实 LNs 表现出粘弹性特性,初始表现为固态响应,然后在较高频率下发生应力松弛。最后,我们发现纳米颗粒的扩散依赖于 LN 的位置,与肠系膜 LN 相比,皮肤引流 LN 中的纳米颗粒具有更高的扩散系数和孔径。我们的数据为 LN 细胞间组织特性、孔径提供了新的认识,并确定了纳米颗粒在 LN 细胞间扩散所需的表面化学参数。我们的研究还为研究 LN 细胞间提供了一种工具,并为针对 LN 细胞间空间的纳米颗粒设计提供了设计标准。
Adv Colloid Interface Sci. 2013-6-10
Acc Chem Res. 2020-10-20
Eur J Immunol. 2008-5
ACS Appl Mater Interfaces. 2025-7-16
Annu Rev Biomed Eng. 2023-6-8
Adv Sci (Weinh). 2022-10
Tissue Eng Part C Methods. 2022-7
Adv Drug Deliv Rev. 2021-12
Trends Immunol. 2021-8
Soft Matter. 2021-11-24
Curr Protoc. 2021-5