Suppr超能文献

多层神经网络的人工视觉:新认知机及其进展。

Artificial vision by multi-layered neural networks: neocognitron and its advances.

机构信息

Fuzzy Logic Systems Institute, Iizuka, Fukuoka, Japan.

出版信息

Neural Netw. 2013 Jan;37:103-19. doi: 10.1016/j.neunet.2012.09.016. Epub 2012 Oct 5.

Abstract

The neocognitron is a neural network model proposed by Fukushima (1980). Its architecture was suggested by neurophysiological findings on the visual systems of mammals. It is a hierarchical multi-layered network. It acquires the ability to robustly recognize visual patterns through learning. Although the neocognitron has a long history, modifications of the network to improve its performance are still going on. For example, a recent neocognitron uses a new learning rule, named add-if-silent, which makes the learning process much simpler and more stable. Nevertheless, a high recognition rate can be kept with a smaller scale of the network. Referring to the history of the neocognitron, this paper discusses recent advances in the neocognitron. We also show that various new functions can be realized by, for example, introducing top-down connections to the neocognitron: mechanism of selective attention, recognition and completion of partly occluded patterns, restoring occluded contours, and so on.

摘要

新认知机是由福岛(1980 年)提出的神经网络模型。它的架构是根据哺乳动物视觉系统的神经生理学发现提出的。它是一个分层的多层网络。通过学习,它获得了稳健识别视觉模式的能力。尽管新认知机历史悠久,但仍在对其进行改进以提高性能。例如,最近的新认知机使用了一种新的学习规则,称为“add-if-silent”,这使得学习过程更加简单和稳定。然而,通过减小网络规模,可以保持较高的识别率。本文参考新认知机的历史,讨论了新认知机的最新进展。我们还表明,通过向新认知机引入自上而下的连接,可以实现各种新功能,例如选择性注意机制、部分遮挡模式的识别和完成、遮挡轮廓的恢复等。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验