Suppr超能文献

计算机视觉与微流控技术相结合:一种用于高通量细胞分析的无标记方法。

Computer vision meets microfluidics: a label-free method for high-throughput cell analysis.

作者信息

Zhou Shizheng, Chen Bingbing, Fu Edgar S, Yan Hong

机构信息

State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 China.

Graduate School of Computing and Information Science, University of Pittsburgh, Pittsburgh, PA 15260 USA.

出版信息

Microsyst Nanoeng. 2023 Sep 21;9:116. doi: 10.1038/s41378-023-00562-8. eCollection 2023.

Abstract

In this paper, we review the integration of microfluidic chips and computer vision, which has great potential to advance research in the life sciences and biology, particularly in the analysis of cell imaging data. Microfluidic chips enable the generation of large amounts of visual data at the single-cell level, while computer vision techniques can rapidly process and analyze these data to extract valuable information about cellular health and function. One of the key advantages of this integrative approach is that it allows for noninvasive and low-damage cellular characterization, which is important for studying delicate or fragile microbial cells. The use of microfluidic chips provides a highly controlled environment for cell growth and manipulation, minimizes experimental variability and improves the accuracy of data analysis. Computer vision can be used to recognize and analyze target species within heterogeneous microbial populations, which is important for understanding the physiological status of cells in complex biological systems. As hardware and artificial intelligence algorithms continue to improve, computer vision is expected to become an increasingly powerful tool for in situ cell analysis. The use of microelectromechanical devices in combination with microfluidic chips and computer vision could enable the development of label-free, automatic, low-cost, and fast cellular information recognition and the high-throughput analysis of cellular responses to different compounds, for broad applications in fields such as drug discovery, diagnostics, and personalized medicine.

摘要

在本文中,我们回顾了微流控芯片与计算机视觉的整合,这对于推动生命科学和生物学研究,特别是在细胞成像数据分析方面具有巨大潜力。微流控芯片能够在单细胞水平上生成大量视觉数据,而计算机视觉技术可以快速处理和分析这些数据,以提取有关细胞健康和功能的有价值信息。这种整合方法的关键优势之一在于它允许进行非侵入性和低损伤的细胞表征,这对于研究脆弱或易碎的微生物细胞非常重要。微流控芯片的使用为细胞生长和操作提供了高度可控的环境,最大限度地减少了实验变异性并提高了数据分析的准确性。计算机视觉可用于识别和分析异质微生物群体中的目标物种,这对于理解复杂生物系统中细胞的生理状态很重要。随着硬件和人工智能算法的不断改进,计算机视觉有望成为用于原位细胞分析的日益强大的工具。将微机电装置与微流控芯片和计算机视觉结合使用,可以实现无标记、自动、低成本和快速的细胞信息识别以及对细胞对不同化合物反应的高通量分析,从而在药物发现、诊断和个性化医疗等领域得到广泛应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3f5/10511704/e015cc71e5d9/41378_2023_562_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验