Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
J Appl Physiol (1985). 2012 Dec 15;113(12):1838-45. doi: 10.1152/japplphysiol.01160.2012. Epub 2012 Oct 25.
The oxygen dependence of mitochondrial oxidative phosphorylation was measured in suspensions of isolated rat liver mitochondria using recently developed methods for measuring oxygen and cytochrome c reduction. Cytochrome-c oxidase (energy conservation site 3) activity of the mitochondrial respiratory chain was measured using an artificial electron donor (N,N,N',N'-tetramethyl-p-phenylenediamine) and ascorbate to directly reduce the cytochrome c, bypassing sites 1 and 2. For mitochondrial suspensions with added ATP, metabolic conditions approximating those in intact cells and decreasing oxygen pressure both increased reduction of cytochrome c and decreased respiratory rate. The kinetic parameters [K(M) and maximal rate (V(M))] for oxygen were determined from the respiratory rates calculated for 100% reduction of cytochrome c. At 22°C, the K(M) for oxygen is near 3 Torr (5 μM), 12 Torr (22 μM), and 18 Torr (32 μM) at pH 6.9, 7.4, and 7.9, respectively, and V(M) corresponds to a turnover number for cytochrome c at 100% reduction of near 80/s and is independent of pH. Uncoupling oxidative phosphorylation increased the respiratory rate at saturating oxygen pressures by twofold and decreased the K(M) for oxygen to <2 Torr at all tested pH values. Mitochondrial oxidative phosphorylation is an important oxygen sensor for regulation of metabolism, nutrient delivery to tissues, and cardiopulmonary function. The decrease in K(M) for oxygen with acidification of the cellular environment impacts many tissue functions and may give transformed cells a significant survival advantage over normal cells at low-pH, oxygen-limited environment in growing tumors.
用最近开发的测量氧和细胞色素 c 还原的方法,在分离的大鼠肝线粒体悬液中测量线粒体氧化磷酸化对氧的依赖性。使用人工电子供体(N,N,N',N'-四甲基-p-苯二胺)和抗坏血酸测量线粒体呼吸链中的细胞色素 c 氧化酶(能量保存位点 3)活性,直接还原细胞色素 c,绕过位点 1 和 2。对于添加了 ATP 的线粒体悬浮液,代谢条件接近完整细胞中的条件,降低氧压会增加细胞色素 c 的还原并降低呼吸速率。氧的动力学参数 [K(M)和最大速率(V(M))] 是从计算出的呼吸速率中得出的,这些呼吸速率是为细胞色素 c 的 100%还原而计算的。在 22°C 下,氧的 K(M)在 pH 6.9、7.4 和 7.9 时分别接近 3 托(5 μM)、12 托(22 μM)和 18 托(32 μM),V(M)对应于 100%还原时细胞色素 c 的周转率接近 80/s,与 pH 无关。解偶联氧化磷酸化使在饱和氧压下的呼吸速率增加了两倍,并将氧的 K(M)降低至所有测试 pH 值下的<2 托。线粒体氧化磷酸化是调节代谢、向组织输送营养物质和心肺功能的重要氧传感器。细胞环境酸化时氧的 K(M)降低会影响许多组织功能,并且在生长肿瘤中低 pH、缺氧环境下,转化细胞可能比正常细胞具有明显的生存优势。