Wang Yongxing, Kulkarni Vikram V, Pantaleón García Jezreel, Leiva-Juárez Miguel M, Goldblatt David L, Gulraiz Fahad, Chen Jichao, Donepudi Sri Ramya, Lorenzi Philip L, Wang Hao, Wong Lee-Jun, Tuvim Michael J, Evans Scott E
Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA.
bioRxiv. 2023 Jan 20:2023.01.19.524841. doi: 10.1101/2023.01.19.524841.
Pneumonia is a worldwide threat, making discovery of novel means to combat lower respiratory tract infections an urgent need. We have previously shown that manipulating the lungs' intrinsic host defenses by therapeutic delivery of a unique dyad of pathogen-associated molecular patterns protects mice against pneumonia in a reactive oxygen species (ROS)-dependent manner. Here we show that antimicrobial ROS are induced from lung epithelial cells by interactions of CpG oligodeoxynucleotides (ODNs) with mitochondrial voltage-dependent anion channel 1 (VDAC1) without dependence on Toll-like receptor 9 (TLR9). The ODN-VDAC1 interaction alters cellular ATP/ADP/AMP localization, increases delivery of electrons to the electron transport chain (ETC), enhances mitochondrial membrane potential (Δ ), and differentially modulates ETC complex activities. These combined effects promote leak of electrons from ETC complex III, resulting in superoxide formation. The ODN-induced mitochondrial ROS yield protective antibacterial effects. Together, these studies identify a therapeutic metabolic manipulation strategy that has the potential to broadly protect patients against pneumonia during periods of peak vulnerability without reliance on currently available antibiotics.
Pneumonia is a major cause of death worldwide. Increasing antibiotic resistance and expanding immunocompromised populations continue to enhance the clinical urgency to find new strategies to prevent and treat pneumonia. We have identified a novel inhaled therapeutic that stimulates lung epithelial defenses to protect mice against pneumonia in a manner that depends on production of reactive oxygen species (ROS). Here, we report that the induction of protective ROS from lung epithelial mitochondria occurs following the interaction of one component of the treatment, an oligodeoxynucleotide, with the mitochondrial voltage-dependent anion channel 1. This interaction alters energy transfer between the mitochondria and the cytosol, resulting in metabolic reprogramming that drives more electrons into the electron transport chain, then causes electrons to leak from the electron transport chain to form protective ROS. While antioxidant therapies are endorsed in many other disease states, we present here an example of therapeutic induction of ROS that is associated with broad protection against pneumonia without reliance on administration of antibiotics.
肺炎是一个全球性的威胁,因此迫切需要发现对抗下呼吸道感染的新方法。我们之前已经表明,通过治疗性递送独特的病原体相关分子模式二元组来操纵肺部的固有宿主防御,可通过活性氧(ROS)依赖性方式保护小鼠免受肺炎侵害。在此,我们表明,CpG寡脱氧核苷酸(ODN)与线粒体电压依赖性阴离子通道1(VDAC1)相互作用可诱导肺上皮细胞产生抗微生物ROS,且不依赖于Toll样受体9(TLR9)。ODN-VDAC1相互作用改变细胞内ATP/ADP/AMP的定位,增加电子向电子传递链(ETC)的传递,增强线粒体膜电位(Δ ),并差异性调节ETC复合物活性。这些综合效应促进电子从ETC复合物III泄漏,导致超氧化物形成。ODN诱导的线粒体ROS产生保护性抗菌作用。总之,这些研究确定了一种治疗性代谢操纵策略,该策略有可能在患者最脆弱的时期广泛保护他们免受肺炎侵害,而无需依赖目前可用的抗生素。
肺炎是全球主要的死亡原因。抗生素耐药性增加和免疫功能低下人群不断扩大,继续加剧了寻找预防和治疗肺炎新策略的临床紧迫性。我们已经确定了一种新型吸入疗法,该疗法通过依赖活性氧(ROS)产生的方式刺激肺上皮防御,保护小鼠免受肺炎侵害。在此,我们报告,治疗成分之一寡脱氧核苷酸与线粒体电压依赖性阴离子通道1相互作用后,肺上皮线粒体中会诱导产生保护性ROS。这种相互作用改变了线粒体与细胞质之间的能量转移,导致代谢重编程,使更多电子进入电子传递链,进而导致电子从电子传递链泄漏,形成保护性ROS。虽然抗氧化疗法在许多其他疾病状态中得到认可,但我们在此展示了一个ROS治疗性诱导的例子,该诱导与广泛预防肺炎相关,且不依赖抗生素给药。