Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyouku, Tokyo 113-8602, Japan.
Curr Pharm Des. 2013;19(14):2606-14. doi: 10.2174/1381612811319140010.
Xanthine oxidoreductase (XOR), a complex flavoprotein, catalyzes the metabolic reactions leading from hypoxanthine to xanthine and from xanthine to urate, and both reactions take place at the molybdenum cofactor. The enzyme is a target of drugs for therapy of gout or hyperuricemia. We review the chemical nature and reaction mechanisms of the molybdenum cofactor of XOR, focusing on molybdenum-dependent reactions of actual or potential medical importance, including nitric oxide (NO) synthesis. It is now generally accepted that XOR transfers the water-exchangeable -OH ligand of the molybdenum atom to the substrate. The hydroxyl group at OH-Mo(IV) can be replaced by urate, oxipurinol and FYX-051 derivatives and the structures of these complexes have been determined by xray crystallography under anaerobic conditions. Although formation of NO from nitrite or formation of xanthine from urate by XOR ischemically feasible, it is not yet clear whether these reactions have any physiological significance since the reactions are catalyzed at a slow rate even under anaerobic conditions.
黄嘌呤氧化还原酶(XOR)是一种复杂的黄素蛋白,可催化从次黄嘌呤到黄嘌呤和从黄嘌呤到尿酸的代谢反应,这两个反应都发生在钼辅因子上。该酶是治疗痛风或高尿酸血症药物的靶点。我们回顾了 XOR 的钼辅因子的化学性质和反应机制,重点关注钼依赖性反应的实际或潜在的医学重要性,包括一氧化氮(NO)合成。现在普遍认为,XOR 将钼原子的可交换水 -OH 配体转移到底物上。OH-Mo(IV) 上的羟基可被尿酸、氧嗪酸和 FYX-051 衍生物取代,并且这些配合物的结构已通过 x 射线晶体学在厌氧条件下确定。尽管 XOR 可以从亚硝酸盐形成 NO,或者从尿酸形成黄嘌呤,但由于这些反应即使在厌氧条件下也以较慢的速度进行,因此尚不清楚这些反应是否具有生理意义。