MacMillan Austin C, Karki Bibek, Yang Juechen, Gertz Karmela R, Zumwalde Samantha, Patel Jay G, Czyzyk-Krzeska Maria F, Meller Jarek, Cunningham John T
Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
Department of Biostatistics, Health Informatics and Data Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
Redox Biol. 2025 Jul;84:103649. doi: 10.1016/j.redox.2025.103649. Epub 2025 Apr 25.
Myc hyperactivation coordinately regulates numerous metabolic processes to drive lymphomagenesis. Here, we elucidate the temporal and functional relationships between the medley of pathways, factors, and mechanisms that cooperate to control redox homeostasis in Myc-overexpressing B cell lymphomas. We find that Myc overexpression rapidly stimulates the oxidative pentose phosphate pathway (oxPPP), nucleotide synthesis, and mitochondrial respiration, which collectively steers cellular equilibrium to a more oxidative state. We identify Myc-dependent hyperactivation of the phosphoribosyl pyrophosphate synthetase (PRPS) enzyme as a primary regulator of redox status in lymphoma cells. Mechanistically, we show that genetic inactivation of the PRPS2 isozyme, but not PRPS1, in Myc-driven lymphoma cells leads to elevated NADPH levels and reductive stress-mediated death. Employing a pharmacological screen, we demonstrate how targeting PRPS1 or PRPS2 elicits opposing sensitivity or resistance, respectively, to chemotherapeutic agents affecting the thioredoxin and glutathione network, thus providing a therapeutic blueprint for treating Myc-driven lymphomas.
Myc的过度激活协同调节众多代谢过程以驱动淋巴瘤发生。在此,我们阐明了在Myc过表达的B细胞淋巴瘤中,协同控制氧化还原稳态的一系列途径、因子和机制之间的时间和功能关系。我们发现Myc过表达迅速刺激氧化戊糖磷酸途径(oxPPP)、核苷酸合成和线粒体呼吸,这些共同将细胞平衡导向更氧化的状态。我们确定磷酸核糖焦磷酸合成酶(PRPS)的Myc依赖性过度激活是淋巴瘤细胞氧化还原状态的主要调节因子。从机制上讲,我们表明在Myc驱动的淋巴瘤细胞中,PRPS2同工酶而非PRPS1的基因失活会导致NADPH水平升高和还原应激介导的死亡。通过药物筛选,我们证明了靶向PRPS1或PRPS2分别如何引发对影响硫氧还蛋白和谷胱甘肽网络的化疗药物的相反敏感性或抗性,从而为治疗Myc驱动的淋巴瘤提供了治疗蓝图。