Suppr超能文献

Ground distribution patterns of selected radioactive, chemical, and physical contaminants from dispersion of U mill tailings.

作者信息

Ibrahim S A, Whicker F W, Simon S L

机构信息

Department of Radiology and Radiation Biology, Colorado State University, Fort Collins 80523.

出版信息

Health Phys. 1990 Mar;58(3):321-8. doi: 10.1097/00004032-199003000-00010.

Abstract

Ground concentrations of 226Ra and total alpha activity as a function of soil depth and distance from an acidic U mill tailings pile were measured, as well as soil pH, sulfate, chloride, and conductivity. Contamination decreased with increasing soil depth and distance from the source. Most of the measured parameters were indistinguishable from background after a distance of 3.3 km from the tailings impoundment. The highest concentrations of all contaminants were contained in the particles less than 0.045 mm in diameter at the soil surface (0-0.6 cm). This fraction represents only 4% to 10% of the total soil mass. Surface soil particles greater than 2.0 mm contained higher concentrations of all contaminants than the intermediate-size (0.045-2.0 mm) fraction. Aggregate formation of the greater than 2.0-mm fraction from small particles or preferential erosion and transport of the tailings sand fractions were proposed as possible explanations. The significant correlations between various measurements were soil 226Ra vs. total alpha activity, sulfate concentration, and conductivity. The latter two parameters are indicative of sulfuric acid leached tailings. The sulfate concentration appeared to be a sensitive and easily measured indicator of tailings contamination and migration into the soil profile. Furthermore, sulfate may be used to delineate acidic U tailings from other sources of contamination (U ore dust, yellowcake, naturally elevated U and Ra) in the environment. Actual site measurements for surface 226Ra concentration were approximately twice the MILDOS computer code prediction.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验