Embrapa Recursos Genéticos e Biotecnologia, C.P. 02372, CEP 70·770-917, Brasília, DF, Brazil.
Ann Bot. 2013 Jan;111(1):113-26. doi: 10.1093/aob/mcs237. Epub 2012 Nov 6.
The genus Arachis contains 80 described species. Section Arachis is of particular interest because it includes cultivated peanut, an allotetraploid, and closely related wild species, most of which are diploids. This study aimed to analyse the genetic relationships of multiple accessions of section Arachis species using two complementary methods. Microsatellites allowed the analysis of inter- and intraspecific variability. Intron sequences from single-copy genes allowed phylogenetic analysis including the separation of the allotetraploid genome components.
Intron sequences and microsatellite markers were used to reconstruct phylogenetic relationships in section Arachis through maximum parsimony and genetic distance analyses.
Although high intraspecific variability was evident, there was good support for most species. However, some problems were revealed, notably a probable polyphyletic origin for A. kuhlmannii. The validity of the genome groups was well supported. The F, K and D genomes grouped close to the A genome group. The 2n = 18 species grouped closer to the B genome group. The phylogenetic tree based on the intron data strongly indicated that A. duranensis and A. ipaënsis are the ancestors of A. hypogaea and A. monticola. Intron nucleotide substitutions allowed the ages of divergences of the main genome groups to be estimated at a relatively recent 2·3-2·9 million years ago. This age and the number of species described indicate a much higher speciation rate for section Arachis than for legumes in general.
The analyses revealed relationships between the species and genome groups and showed a generally high level of intraspecific genetic diversity. The improved knowledge of species relationships should facilitate the utilization of wild species for peanut improvement. The estimates of speciation rates in section Arachis are high, but not unprecedented. We suggest these high rates may be linked to the peculiar reproductive biology of Arachis.
落花生属包含 80 个已描述的种。节落花生属特别有趣,因为它包括栽培花生,一个异源四倍体和密切相关的野生种,其中大多数是二倍体。本研究旨在使用两种互补的方法分析节落花生属多个种的遗传关系。微卫星允许分析种内和种间变异性。单拷贝基因的内含子序列允许进行包括异源四倍体基因组成分分离的系统发育分析。
通过最大简约法和遗传距离分析,使用内含子序列和微卫星标记重建节落花生属的系统发育关系。
尽管种内高度变异性明显,但大多数种都得到了很好的支持。然而,也揭示了一些问题,特别是 A. kuhlmannii 可能具有多系起源。基因组群的有效性得到了很好的支持。F、K 和 D 基因组与 A 基因组群密切相关。2n = 18 的种与 B 基因组群更接近。基于内含子数据的系统发育树强烈表明,A. duranensis 和 A. ipaënsis 是 A. hypogaea 和 A. monticola 的祖先。内含子核苷酸取代允许估计主要基因组群的分歧时间大约在相对较近的 2.3-2.9 百万年前。这个年龄和描述的种数表明,节落花生属的物种形成率远高于豆科植物的一般水平。
分析揭示了种间和基因组群之间的关系,并显示出种内遗传多样性的总体高水平。对物种关系的更好了解应该有助于利用野生种来改良落花生。节落花生属的物种形成率估计较高,但并非前所未有。我们建议这些高的速率可能与落花生属特殊的生殖生物学有关。