Suppr超能文献

由抑制性相互作用驱动的前馈架构。

Feedforward architectures driven by inhibitory interactions.

作者信息

Billeh Yazan N, Schaub Michael T

机构信息

Computation and Neural Systems Program, California Institute of Technology, Pasadena, CA, USA.

Allen Institute for Brain Science, Seattle, WA, USA.

出版信息

J Comput Neurosci. 2018 Feb;44(1):63-74. doi: 10.1007/s10827-017-0669-1. Epub 2017 Nov 14.

Abstract

Directed information transmission is paramount for many social, physical, and biological systems. For neural systems, scientists have studied this problem under the paradigm of feedforward networks for decades. In most models of feedforward networks, activity is exclusively driven by excitatory neurons and the wiring patterns between them, while inhibitory neurons play only a stabilizing role for the network dynamics. Motivated by recent experimental discoveries of hippocampal circuitry, cortical circuitry, and the diversity of inhibitory neurons throughout the brain, here we illustrate that one can construct such networks even if the connectivity between the excitatory units in the system remains random. This is achieved by endowing inhibitory nodes with a more active role in the network. Our findings demonstrate that apparent feedforward activity can be caused by a much broader network-architectural basis than often assumed.

摘要

定向信息传输对于许多社会、物理和生物系统至关重要。对于神经系统,科学家们在前馈网络范式下研究这个问题已有数十年。在前馈网络的大多数模型中,活动完全由兴奋性神经元及其之间的连接模式驱动,而抑制性神经元仅对网络动态起稳定作用。受最近海马体回路、皮质回路以及全脑抑制性神经元多样性的实验发现启发,我们在此表明,即使系统中兴奋性单元之间的连接保持随机,也可以构建这样的网络。这是通过赋予抑制性节点在网络中更积极的作用来实现的。我们的发现表明,明显的前馈活动可能由比通常假设更广泛的网络架构基础引起。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验