Suppr超能文献

使用单一吡咯赖氨酸 - tRNA合成酶突变体对十二种间位取代苯丙氨酸衍生物进行遗传掺入。

Genetic incorporation of twelve meta-substituted phenylalanine derivatives using a single pyrrolysyl-tRNA synthetase mutant.

作者信息

Wang Yane-Shih, Fang Xinqiang, Chen Hsueh-Ying, Wu Bo, Wang Zhiyong U, Hilty Christian, Liu Wenshe R

机构信息

Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.

出版信息

ACS Chem Biol. 2013 Feb 15;8(2):405-15. doi: 10.1021/cb300512r. Epub 2012 Nov 19.

Abstract

When coexpressed with its cognate amber suppressing tRNACUAPyl(CUA), a pyrrolysyltRNA synthetase mutant N346A/C348A is able to genetically incorporate 12 meta-substituted phenylalanine derivatives into proteins site-specifically at amber mutation sites in Escherichia coli. These genetically encoded noncanonical amino acids resemble phenylalanine in size and contain diverse bioorthogonal functional groups such as halide, trifluoromethyl, nitrile, nitro,ketone, alkyne, and azide moieties. The genetic installation of these functional groups in proteins provides multiple ways to site-selectively label proteins with biophysical and biochemical probes for their functional investigations. We demonstrate that a genetically incorporated trifluoromethyl group can be used as a sensitive 19F NMR probe to study protein folding/unfolding, and that genetically incorporated reactive functional groups such as ketone,alkyne, and azide moieties can be applied to site-specifically label proteins with fluorescent probes. This critical discovery allows the synthesis of proteins with diverse bioorthogonal functional groups for a variety of basic studies and biotechnology development using a single recombinant expression system.

摘要

当与同源琥珀抑制tRNACUAPyl(CUA)共表达时,吡咯赖氨酰tRNA合成酶突变体N346A/C348A能够在大肠杆菌的琥珀突变位点将12种间位取代的苯丙氨酸衍生物位点特异性地遗传掺入蛋白质中。这些遗传编码的非天然氨基酸在大小上类似于苯丙氨酸,并含有多种生物正交官能团,如卤化物、三氟甲基、腈基、硝基、酮基、炔基和叠氮基部分。这些官能团在蛋白质中的遗传引入提供了多种方法,可通过生物物理和生化探针位点选择性地标记蛋白质以进行功能研究。我们证明,遗传掺入的三氟甲基可作为灵敏的19F NMR探针用于研究蛋白质折叠/去折叠,并且遗传掺入的反应性官能团如酮基、炔基和叠氮基部分可用于用荧光探针位点特异性地标记蛋白质。这一关键发现使得能够使用单一重组表达系统合成具有多种生物正交官能团的蛋白质,用于各种基础研究和生物技术开发。

相似文献

3
A rationally designed pyrrolysyl-tRNA synthetase mutant with a broad substrate spectrum.
J Am Chem Soc. 2012 Feb 15;134(6):2950-3. doi: 10.1021/ja211972x. Epub 2012 Feb 6.
4
Genetic incorporation of histidine derivatives using an engineered pyrrolysyl-tRNA synthetase.
ACS Chem Biol. 2014 May 16;9(5):1092-6. doi: 10.1021/cb500032c. Epub 2014 Mar 17.
5
Pyrrolysyl-tRNA synthetase variants reveal ancestral aminoacylation function.
FEBS Lett. 2013 Oct 1;587(19):3243-8. doi: 10.1016/j.febslet.2013.08.018. Epub 2013 Aug 28.
6
A Designed, Highly Efficient Pyrrolysyl-tRNA Synthetase Mutant Binds o-Chlorophenylalanine Using Two Halogen Bonds.
J Mol Biol. 2022 Apr 30;434(8):167534. doi: 10.1016/j.jmb.2022.167534. Epub 2022 Mar 9.
7
Structural Basis for Genetic-Code Expansion with Bulky Lysine Derivatives by an Engineered Pyrrolysyl-tRNA Synthetase.
Cell Chem Biol. 2019 Jul 18;26(7):936-949.e13. doi: 10.1016/j.chembiol.2019.03.008. Epub 2019 Apr 25.
9
Pyrrolysine analogs as substrates for bacterial pyrrolysyl-tRNA synthetase in vitro and in vivo.
Biosci Biotechnol Biochem. 2012;76(1):205-8. doi: 10.1271/bbb.110653. Epub 2012 Jan 7.
10
Thermophilic Pyrrolysyl-tRNA Synthetase Mutants for Enhanced Mammalian Genetic Code Expansion.
ACS Synth Biol. 2020 Oct 16;9(10):2723-2736. doi: 10.1021/acssynbio.0c00257. Epub 2020 Sep 23.

引用本文的文献

1
Pyrrolysine Aminoacyl-tRNA Synthetase as a Tool for Expanding the Genetic Code.
Int J Mol Sci. 2025 Jan 10;26(2):539. doi: 10.3390/ijms26020539.
2
Site-Specific Incorporation of Fluorinated Prolines into Proteins and Their Impact on Neighbouring Residues.
Chemistry. 2025 Jan 27;31(6):e202403718. doi: 10.1002/chem.202403718. Epub 2024 Dec 30.
3
Engineering Pyrrolysine Systems for Genetic Code Expansion and Reprogramming.
Chem Rev. 2024 Oct 9;124(19):11008-11062. doi: 10.1021/acs.chemrev.4c00243. Epub 2024 Sep 5.
4
Cracking the Code: Reprogramming the Genetic Script in Prokaryotes and Eukaryotes to Harness the Power of Noncanonical Amino Acids.
Chem Rev. 2024 Sep 25;124(18):10281-10362. doi: 10.1021/acs.chemrev.3c00878. Epub 2024 Aug 9.
5
Evolution of Pyrrolysyl-tRNA Synthetase: From Methanogenesis to Genetic Code Expansion.
Chem Rev. 2024 Aug 28;124(16):9580-9608. doi: 10.1021/acs.chemrev.4c00031. Epub 2024 Jul 2.
6
Diversification of Phage-Displayed Peptide Libraries with Noncanonical Amino Acid Mutagenesis and Chemical Modification.
Chem Rev. 2024 May 8;124(9):6051-6077. doi: 10.1021/acs.chemrev.4c00004. Epub 2024 Apr 30.
7
Rational design of the genetic code expansion toolkit for encoding of D-amino acids.
Front Genet. 2023 Oct 13;14:1277489. doi: 10.3389/fgene.2023.1277489. eCollection 2023.
8
Rapid Biomolecular Trifluoromethylation Using Cationic Aromatic Sulfonate Esters as Visible-Light-Triggered Radical Photocages.
J Am Chem Soc. 2023 Oct 25;145(42):22878-22884. doi: 10.1021/jacs.3c08098. Epub 2023 Oct 11.
10
Synthesis of Amino Acids Bearing Halodifluoromethyl Moieties and Their Application to p53-Derived Peptides Binding to Mdm2/Mdm4.
Drug Des Devel Ther. 2023 Apr 25;17:1247-1274. doi: 10.2147/DDDT.S406703. eCollection 2023.

本文引用的文献

1
Single domain m-plane ZnO grown on m-plane sapphire by radio frequency magnetron sputtering.
ACS Appl Mater Interfaces. 2012 Oct 24;4(10):5333-7. doi: 10.1021/am301271k. Epub 2012 Oct 1.
3
Expanding the genetic code of Caenorhabditis elegans using bacterial aminoacyl-tRNA synthetase/tRNA pairs.
ACS Chem Biol. 2012 Jul 20;7(7):1292-302. doi: 10.1021/cb200542j. Epub 2012 May 11.
4
A rationally designed pyrrolysyl-tRNA synthetase mutant with a broad substrate spectrum.
J Am Chem Soc. 2012 Feb 15;134(6):2950-3. doi: 10.1021/ja211972x. Epub 2012 Feb 6.
6
A genetically incorporated crosslinker reveals chaperone cooperation in acid resistance.
Nat Chem Biol. 2011 Sep 4;7(10):671-7. doi: 10.1038/nchembio.644.
7
Expanding the genetic code of an animal.
J Am Chem Soc. 2011 Sep 14;133(36):14196-9. doi: 10.1021/ja2054034. Epub 2011 Aug 22.
9
An evolved aminoacyl-tRNA synthetase with atypical polysubstrate specificity.
Biochemistry. 2011 Mar 22;50(11):1894-900. doi: 10.1021/bi101929e. Epub 2011 Feb 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验