Suppr超能文献

分子动力学和核磁共振弛豫揭示的野生型和HIV-1蛋白酶耐药变体中的差异瓣动态

Differential Flap Dynamics in Wild-type and a Drug Resistant Variant of HIV-1 Protease Revealed by Molecular Dynamics and NMR Relaxation.

作者信息

Cai Yufeng, Yilmaz Nese Kurt, Myint Wazo, Ishima Rieko, Schiffer Celia A

机构信息

Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA.

出版信息

J Chem Theory Comput. 2012 Oct 9;8(10):3452-3462. doi: 10.1021/ct300076y. Epub 2012 Apr 17.

Abstract

In the rapidly evolving disease of HIV drug resistance readily emerges, nullifying the effectiveness of therapy. Drug resistance has been extensively studied in HIV-1 protease where resistance occurs when the balance between enzyme inhibition and substrate recognition and turn-over is perturbed to favor catalytic activity. Mutations which confer drug resistance can impact the dynamics and structure of both the bound and unbound forms of the enzyme. Flap+ is a multi-drug-resistant variant of HIV-1 protease with a combination of mutations at the edge of the active site, within the active site, and in the flaps (L10I, G48V, I54V, V82A). The impact of these mutations on the dynamics in the unliganded form in comparison with the wild-type protease was elucidated with Molecular Dynamic simulations and NMR relaxation experiments. The comparative analyses from both methods concur in showing that the enzyme's dynamics are impacted by the drug resistance mutations in Flap+ protease. These alterations in the enzyme dynamics, particularly within the flaps, likely modulate the balance between substrate turn-over and drug binding, thereby conferring drug resistance.

摘要

在快速演变的艾滋病病毒疾病中,耐药性很容易出现,使治疗效果失效。艾滋病病毒1型蛋白酶的耐药性已得到广泛研究,当酶抑制与底物识别及周转之间的平衡受到干扰而有利于催化活性时,就会出现耐药性。赋予耐药性的突变会影响酶的结合态和游离态的动力学及结构。Flap+是艾滋病病毒1型蛋白酶的一种多药耐药变体,在活性位点边缘、活性位点内以及瓣片处存在多种突变组合(L10I、G48V、I54V、V82A)。通过分子动力学模拟和核磁共振弛豫实验,阐明了这些突变与野生型蛋白酶相比对无配体形式动力学的影响。两种方法的比较分析一致表明,Flap+蛋白酶中的耐药性突变会影响酶的动力学。酶动力学的这些改变,尤其是在瓣片内的改变,可能会调节底物周转与药物结合之间的平衡,从而导致耐药性。

相似文献

1
2
Drug Resistance Mutations Alter Dynamics of Inhibitor-Bound HIV-1 Protease.
J Chem Theory Comput. 2014 Aug 12;10(8):3438-3448. doi: 10.1021/ct4010454. Epub 2014 Jun 12.
5
Cooperative effects of drug-resistance mutations in the flap region of HIV-1 protease.
ACS Chem Biol. 2013 Mar 15;8(3):513-8. doi: 10.1021/cb3006193. Epub 2012 Dec 27.
8
Decomposing the energetic impact of drug resistant mutations in HIV-1 protease on binding DRV.
J Chem Theory Comput. 2010 Apr 13;6(4):1358-1368. doi: 10.1021/ct9004678.
9
Effects of the V82A and I54V mutations on the dynamics and ligand binding properties of HIV-1 protease.
J Mol Model. 2010 Oct;16(10):1577-83. doi: 10.1007/s00894-010-0677-9. Epub 2010 Feb 27.

引用本文的文献

1
Dynamic Allostery: Evolution's Double-Edged Sword in Protein Function and Disease.
J Mol Biol. 2025 Apr 24:169175. doi: 10.1016/j.jmb.2025.169175.
4
Viral proteases: Structure, mechanism and inhibition.
Enzymes. 2021;50:301-333. doi: 10.1016/bs.enz.2021.09.004. Epub 2021 Nov 17.
5
Structural Impacts of Drug-Resistance Mutations Appearing in HIV-2 Protease.
Molecules. 2021 Jan 25;26(3):611. doi: 10.3390/molecules26030611.
6
Drug Design Strategies to Avoid Resistance in Direct-Acting Antivirals and Beyond.
Chem Rev. 2021 Mar 24;121(6):3238-3270. doi: 10.1021/acs.chemrev.0c00648. Epub 2021 Jan 7.
8
An NMR strategy to detect conformational differences in a protein complexed with highly analogous inhibitors in solution.
Methods. 2018 Sep 15;148:9-18. doi: 10.1016/j.ymeth.2018.04.005. Epub 2018 Apr 12.
9
Hydration Structure and Dynamics of Inhibitor-Bound HIV-1 Protease.
J Chem Theory Comput. 2018 May 8;14(5):2784-2796. doi: 10.1021/acs.jctc.8b00097. Epub 2018 Apr 18.
10
Replica Exchange Gaussian Accelerated Molecular Dynamics: Improved Enhanced Sampling and Free Energy Calculation.
J Chem Theory Comput. 2018 Apr 10;14(4):1853-1864. doi: 10.1021/acs.jctc.7b01226. Epub 2018 Mar 12.

本文引用的文献

1
Extreme entropy-enthalpy compensation in a drug-resistant variant of HIV-1 protease.
ACS Chem Biol. 2012 Sep 21;7(9):1536-46. doi: 10.1021/cb300191k. Epub 2012 Jul 2.
2
Hydrophobic core flexibility modulates enzyme activity in HIV-1 protease.
J Am Chem Soc. 2012 Mar 7;134(9):4163-8. doi: 10.1021/ja2095766. Epub 2012 Feb 28.
3
4
Molecular Basis for Drug Resistance in HIV-1 Protease.
Viruses. 2010 Nov;2(11):2509-2535. doi: 10.3390/v2112509. Epub 2010 Nov 12.
6
Dynamics of preferential substrate recognition in HIV-1 protease: redefining the substrate envelope.
J Mol Biol. 2011 Jul 22;410(4):726-44. doi: 10.1016/j.jmb.2011.03.053.
7
Decomposing the energetic impact of drug resistant mutations in HIV-1 protease on binding DRV.
J Chem Theory Comput. 2010 Apr 13;6(4):1358-1368. doi: 10.1021/ct9004678.
8
Solute effects on spin labels at an aqueous-exposed site in the flap region of HIV-1 protease.
J Phys Chem B. 2009 Feb 12;113(6):1673-80. doi: 10.1021/jp8057788.
9
Drug pressure selected mutations in HIV-1 protease alter flap conformations.
J Am Chem Soc. 2009 Jan 21;131(2):430-1. doi: 10.1021/ja807531v.
10
Molecular simulation as an aid to experimentalists.
Curr Opin Struct Biol. 2008 Apr;18(2):149-53. doi: 10.1016/j.sbi.2007.12.007. Epub 2008 Feb 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验