Raman E Prabhu, Vanommeslaeghe Kenno, Mackerell Alexander D
Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street HSF II, Baltimore MD 21201.
J Chem Theory Comput. 2012 Oct 9;8(10):3513-3525. doi: 10.1021/ct300088r. Epub 2012 Mar 26.
The in-silico Site Identification by Ligand Competitive Saturation (SILCS) approach identifies the binding sites of representative chemical entities on the entire protein surface, information that can be applied for computational fragment-based drug design. In this study, we report an efficient computational protocol that uses sampling of the protein-fragment conformational space obtained from the SILCS simulations and performs single step free energy perturbation (SSFEP) calculations to identify site-specific favorable chemical modifications of benzene involving substitutions of ring hydrogens with individual non-hydrogen atoms. The SSFEP method is able to capture the experimental trends in relative hydration free energies of benzene analogues and for two datasets of experimental relative binding free energies of congeneric series of ligands of the proteins α-thrombin and P38 MAP kinase. The approach includes a protocol in which data obtained from SILCS simulations of the proteins is first analyzed to identify favorable benzene binding sites following which an ensemble of benzene-protein conformations for that site is obtained. The SSFEP protocol applied to that ensemble results in good reproduction of experimental free energies of the α-thrombin ligands, but not for P38 MAP kinase ligands. Comparison with results from a P38 full-ligand simulation and analysis of conformations reveals the reason for the poor agreement being the connectivity with the remainder of the ligand, a limitation inherent in fragment-based methods. Since the SSFEP approach can identify favorable benzene modifications as well as identify the most favorable fragment conformations, the obtained information can be of value for fragment linking or structure-based optimization.
通过配体竞争饱和进行计算机虚拟位点识别(SILCS)方法可识别代表性化学实体在整个蛋白质表面的结合位点,该信息可应用于基于计算片段的药物设计。在本研究中,我们报告了一种高效的计算方案,该方案使用从SILCS模拟获得的蛋白质-片段构象空间采样,并执行单步自由能扰动(SSFEP)计算,以识别苯的位点特异性有利化学修饰,包括用单个非氢原子取代环氢。SSFEP方法能够捕捉苯类似物相对水合自由能的实验趋势,以及蛋白质α-凝血酶和P38丝裂原活化蛋白激酶同类系列配体的两个实验相对结合自由能数据集的趋势。该方法包括一个方案,其中首先分析从蛋白质的SILCS模拟获得的数据,以识别有利的苯结合位点,随后获得该位点的苯-蛋白质构象集合。应用于该集合的SSFEP方案能够很好地重现α-凝血酶配体的实验自由能,但对于P38丝裂原活化蛋白激酶配体则不然。与P38全配体模拟结果的比较和构象分析揭示了一致性较差的原因是与配体其余部分的连接性,这是基于片段方法固有的局限性。由于SSFEP方法可以识别有利的苯修饰以及识别最有利的片段构象,因此获得的信息对于片段连接或基于结构的优化可能有价值。