Suppr超能文献

基于单步自由能微扰和配体竞争饱和方法的位点鉴定,使用预计算的集合估算相对结合自由能。

Estimation of relative free energies of binding using pre-computed ensembles based on the single-step free energy perturbation and the site-identification by Ligand competitive saturation approaches.

机构信息

Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street HSF II, Baltimore, Maryland, 21201.

Medicine Design, Worldwide Research & Development, Pfizer Inc, 610 Main Street, Cambridge, Massachusetts, 02139.

出版信息

J Comput Chem. 2017 Jun 5;38(15):1238-1251. doi: 10.1002/jcc.24522. Epub 2016 Oct 26.

Abstract

Accurate and rapid estimation of relative binding affinities of ligand-protein complexes is a requirement of computational methods for their effective use in rational ligand design. Of the approaches commonly used, free energy perturbation (FEP) methods are considered one of the most accurate, although they require significant computational resources. Accordingly, it is desirable to have alternative methods of similar accuracy but greater computational efficiency to facilitate ligand design. In the present study relative free energies of binding are estimated for one or two non-hydrogen atom changes in compounds targeting the proteins ACK1 and p38 MAP kinase using three methods. The methods include standard FEP, single-step free energy perturbation (SSFEP) and the site-identification by ligand competitive saturation (SILCS) ligand grid free energy (LGFE) approach. Results show the SSFEP and SILCS LGFE methods to be competitive with or better than the FEP results for the studied systems, with SILCS LGFE giving the best agreement with experimental results. This is supported by additional comparisons with published FEP data on p38 MAP kinase inhibitors. While both the SSFEP and SILCS LGFE approaches require a significant upfront computational investment, they offer a 1000-fold computational savings over FEP for calculating the relative affinities of ligand modifications once those pre-computations are complete. An illustrative example of the potential application of these methods in the context of screening large numbers of transformations is presented. Thus, the SSFEP and SILCS LGFE approaches represent viable alternatives for actively driving ligand design during drug discovery and development. © 2016 Wiley Periodicals, Inc.

摘要

准确快速地估计配体-蛋白质复合物的相对结合亲和力是计算方法在合理配体设计中有效应用的要求。在常用的方法中,自由能微扰(FEP)方法被认为是最准确的方法之一,尽管它们需要大量的计算资源。因此,需要具有类似准确性但计算效率更高的替代方法来促进配体设计。在本研究中,使用三种方法估计了针对 ACK1 和 p38 MAP 激酶蛋白的化合物中的一个或两个非氢原子变化的相对结合自由能。这些方法包括标准 FEP、单步自由能微扰(SSFEP)和通过配体竞争饱和(SILCS)配体网格自由能(LGFE)方法鉴定位点。结果表明,SSFEP 和 SILCS LGFE 方法对于所研究的系统与 FEP 结果具有竞争力或优于 FEP 结果,SILCS LGFE 与实验结果的一致性最好。这得到了与已发表的 p38 MAP 激酶抑制剂 FEP 数据的额外比较的支持。虽然 SSFEP 和 SILCS LGFE 方法都需要大量的前期计算投资,但与 FEP 相比,在完成这些预计算后,它们在计算配体修饰的相对亲和力方面具有 1000 倍的计算节省。提出了一个在大规模转化筛选背景下这些方法潜在应用的说明性示例。因此,SSFEP 和 SILCS LGFE 方法代表了在药物发现和开发过程中积极驱动配体设计的可行替代方案。

相似文献

2
Inclusion of multiple fragment types in the site identification by ligand competitive saturation (SILCS) approach.
J Chem Inf Model. 2013 Dec 23;53(12):3384-98. doi: 10.1021/ci4005628. Epub 2013 Nov 25.
4
Site-Specific Fragment Identification Guided by Single-Step Free Energy Perturbation Calculations.
J Chem Theory Comput. 2012 Oct 9;8(10):3513-3525. doi: 10.1021/ct300088r. Epub 2012 Mar 26.
5
Protein-Ligand Binding Free Energy Calculations with FEP.
Methods Mol Biol. 2019;2022:201-232. doi: 10.1007/978-1-4939-9608-7_9.
9
Computational fragment-based binding site identification by ligand competitive saturation.
PLoS Comput Biol. 2009 Jul;5(7):e1000435. doi: 10.1371/journal.pcbi.1000435. Epub 2009 Jul 10.
10
Integrated Covalent Drug Design Workflow Using Site Identification by Ligand Competitive Saturation.
J Chem Theory Comput. 2023 May 23;19(10):3007-3021. doi: 10.1021/acs.jctc.3c00232. Epub 2023 Apr 28.

引用本文的文献

1
Mechanistic and predictive formulation development for viscosity mitigation of high-concentration biotherapeutics.
MAbs. 2025 Dec;17(1):2550757. doi: 10.1080/19420862.2025.2550757. Epub 2025 Sep 15.
2
Enhancing SILCS-MC via GPU Acceleration and Ligand Conformational Optimization with Genetic and Parallel Tempering Algorithms.
J Phys Chem B. 2024 Aug 1;128(30):7362-7375. doi: 10.1021/acs.jpcb.4c03045. Epub 2024 Jul 20.
3
Nitro-benzylideneoxymorphone, a bifunctional mu and delta opioid receptor ligand with high mu opioid receptor efficacy.
Front Pharmacol. 2023 Jul 3;14:1230053. doi: 10.3389/fphar.2023.1230053. eCollection 2023.
4
Site Identification by Ligand Competitive Saturation-Biologics Approach for Structure-Based Protein Charge Prediction.
Mol Pharm. 2023 May 1;20(5):2600-2611. doi: 10.1021/acs.molpharmaceut.3c00064. Epub 2023 Apr 5.
5
hERG Blockade Prediction by Combining Site Identification by Ligand Competitive Saturation and Physicochemical Properties.
Chemistry (Basel). 2022 Sep;4(3):630-646. doi: 10.3390/chemistry4030045. Epub 2022 Jun 21.
6
Best practices for constructing, preparing, and evaluating protein-ligand binding affinity benchmarks [Article v0.1].
Living J Comput Mol Sci. 2022;4(1). doi: 10.33011/livecoms.4.1.1497. Epub 2022 Aug 30.
8
Insights into substrate recognition and specificity for IgG by Endoglycosidase S2.
PLoS Comput Biol. 2021 Jul 26;17(7):e1009103. doi: 10.1371/journal.pcbi.1009103. eCollection 2021 Jul.
10
Toward Biotherapeutics Formulation Composition Engineering using Site-Identification by Ligand Competitive Saturation (SILCS).
J Pharm Sci. 2021 Mar;110(3):1103-1110. doi: 10.1016/j.xphs.2020.10.051. Epub 2020 Nov 1.

本文引用的文献

1
New Soft-Core Potential Function for Molecular Dynamics Based Alchemical Free Energy Calculations.
J Chem Theory Comput. 2012 Jul 10;8(7):2373-82. doi: 10.1021/ct300220p. Epub 2012 Jun 6.
2
A Comprehensive Structural Overview of p38α MAPK in Complex with Type I Inhibitors.
ChemMedChem. 2015 Jun;10(6):957-69. doi: 10.1002/cmdc.201500030. Epub 2015 Apr 9.
3
Cyclopropyl-containing positive allosteric modulators of metabotropic glutamate receptor subtype 5.
Bioorg Med Chem Lett. 2015 Jun 1;25(11):2275-9. doi: 10.1016/j.bmcl.2015.04.042. Epub 2015 Apr 20.
4
Acyl-2-aminobenzimidazoles: a novel class of neuroprotective agents targeting mGluR5.
Bioorg Med Chem. 2015 May 1;23(9):2211-20. doi: 10.1016/j.bmc.2015.02.054. Epub 2015 Mar 6.
6
Mapping functional group free energy patterns at protein occluded sites: nuclear receptors and G-protein coupled receptors.
J Chem Inf Model. 2015 Mar 23;55(3):700-8. doi: 10.1021/ci500729k. Epub 2015 Feb 25.
8
Pharmacophore modeling using site-identification by ligand competitive saturation (SILCS) with multiple probe molecules.
J Chem Inf Model. 2015 Feb 23;55(2):407-20. doi: 10.1021/ci500691p. Epub 2015 Feb 6.
9
CHARMM additive and polarizable force fields for biophysics and computer-aided drug design.
Biochim Biophys Acta. 2015 May;1850(5):861-871. doi: 10.1016/j.bbagen.2014.08.004. Epub 2014 Aug 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验