Suppr超能文献

使用配体竞争饱和法(SILCS)结合多个探针分子进行药效团建模。

Pharmacophore modeling using site-identification by ligand competitive saturation (SILCS) with multiple probe molecules.

作者信息

Yu Wenbo, Lakkaraju Sirish Kaushik, Raman E Prabhu, Fang Lei, MacKerell Alexander D

机构信息

Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States.

出版信息

J Chem Inf Model. 2015 Feb 23;55(2):407-20. doi: 10.1021/ci500691p. Epub 2015 Feb 6.

Abstract

Receptor-based pharmacophore modeling is an efficient computer-aided drug design technique that uses the structure of the target protein to identify novel leads. However, most methods consider protein flexibility and desolvation effects in a very approximate way, which may limit their use in practice. The Site-Identification by Ligand Competitive Saturation (SILCS) assisted pharmacophore modeling protocol (SILCS-Pharm) was introduced recently to address these issues, as SILCS naturally takes both protein flexibility and desolvation effects into account by using full molecular dynamics simulations to determine 3D maps of the functional group-affinity patterns on a target receptor. In the present work, the SILCS-Pharm protocol is extended to use a wider range of probe molecules including benzene, propane, methanol, formamide, acetaldehyde, methylammonium, acetate and water. This approach removes the previous ambiguity brought by using water as both the hydrogen-bond donor and acceptor probe molecule. The new SILCS-Pharm protocol is shown to yield improved screening results, as compared to the previous approach based on three target proteins. Further validation of the new protocol using five additional protein targets showed improved screening compared to those using common docking methods, further indicating improvements brought by the explicit inclusion of additional feature types associated with the wider collection of probe molecules in the SILCS simulations. The advantage of using complementary features and volume constraints, based on exclusion maps of the protein defined from the SILCS simulations, is presented. In addition, reranking using SILCS-based ligand grid free energies is shown to enhance the diversity of identified ligands for the majority of targets. These results suggest that the SILCS-Pharm protocol will be of utility in rational drug design.

摘要

基于受体的药效团建模是一种高效的计算机辅助药物设计技术,它利用靶蛋白的结构来识别新型先导化合物。然而,大多数方法以非常近似的方式考虑蛋白质的灵活性和去溶剂化效应,这可能会限制它们在实际中的应用。最近引入了通过配体竞争饱和进行位点识别(SILCS)辅助的药效团建模方案(SILCS-Pharm)来解决这些问题,因为SILCS通过使用全分子动力学模拟来确定靶受体上官能团亲和模式的三维图谱,自然地同时考虑了蛋白质的灵活性和去溶剂化效应。在本研究中,SILCS-Pharm方案得到扩展,以使用更广泛的探针分子,包括苯、丙烷、甲醇、甲酰胺、乙醛、甲基铵、乙酸盐和水。这种方法消除了以前将水既用作氢键供体又用作受体探针分子所带来的模糊性。与基于三种靶蛋白的先前方法相比,新的SILCS-Pharm方案显示出改进的筛选结果。使用另外五种蛋白质靶标对新方案进行的进一步验证表明,与使用常规对接方法相比,筛选结果有所改善,这进一步表明在SILCS模拟中明确纳入与更广泛的探针分子集合相关的其他特征类型所带来的改进。还介绍了基于从SILCS模拟定义的蛋白质排除图谱使用互补特征和体积约束的优势。此外,使用基于SILCS的配体网格自由能进行重新排序显示,对于大多数靶标,可增强所识别配体的多样性。这些结果表明,SILCS-Pharm方案将在合理药物设计中发挥作用。

相似文献

引用本文的文献

10
Structural and thermodynamic framework for PIEZO1 modulation by small molecules.小分子对 PIEZO1 调节的结构和热力学框架。
Proc Natl Acad Sci U S A. 2023 Dec 12;120(50):e2310933120. doi: 10.1073/pnas.2310933120. Epub 2023 Dec 7.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验