Suppr超能文献

药物纳米胶囊与聚乙二醇化聚电解质的逐层构筑组装

Architectural layer-by-layer assembly of drug nanocapsules with PEGylated polyelectrolytes.

作者信息

Shutava Tatsiana G, Pattekari Pravin P, Arapov Kirill A, Torchilin Vladimir P, Lvov Yuri M

机构信息

Louisiana Tech University, Institute for Micromanufacturing, 911 Hergot Ave., Ruston, Louisiana, 71272, USA.

出版信息

Soft Matter. 2012 Jan 1;8(36):9418-9427. doi: 10.1039/C2SM25683E. Epub 2012 Jun 25.

Abstract

150-200 nm diameter capsules containing 60-70 wt % of poorly soluble drugs, paclitaxel and camptothecin, were produced by layer-by-layer (LbL) assembly on drug nanocores in a solution containing uncharged stabilizers. Optimization of capsule shell architecture and thickness allowed for concentrated (3-5 mg/mL) colloids that are stable in isotonic salt buffers. Nanoparticle aggregation during the washless LbL-assembly was prevented by using low molecular weight block-copolymers of poly(amino acids) (poly-L-lysine and poly-L-glutamic acid) with polyethylene glycol (PEG) in combination with heparin and bovine serum albumin at every bilayer building step. Minimal amounts of the polyelectrolytes were used to recharge the surface of nanoparticles in this non-washing LbL process. Such PEGylated shells resulted in drug nanocapsules with high colloidal stability in PBS buffer and increased protein adhesion resistance. The washless LbL polyelectrolyte nanocapsule assembly process, colloidal stability and nanoparticle morphology were monitored by dynamic light scattering and electrophoretic mobility measurements, UV-vis spectroscopy, TEM, SEM and laser confocal microscopy imaging.

摘要

通过在含有不带电稳定剂的溶液中,在药物纳米核上进行逐层(LbL)组装,制备出了直径为150 - 200 nm的胶囊,其中含有60 - 70 wt%的难溶性药物紫杉醇和喜树碱。胶囊壳结构和厚度的优化使得在等渗盐缓冲液中稳定的浓缩(3 - 5 mg/mL)胶体得以实现。在无洗涤的LbL组装过程中,通过在每一个双层构建步骤中使用聚(氨基酸)(聚-L-赖氨酸和聚-L-谷氨酸)与聚乙二醇(PEG)的低分子量嵌段共聚物,并结合肝素和牛血清白蛋白,防止了纳米颗粒的聚集。在这种无洗涤的LbL过程中,使用了最少量的聚电解质来使纳米颗粒表面重新带电。这种聚乙二醇化的壳层使得药物纳米胶囊在PBS缓冲液中具有高胶体稳定性,并提高了抗蛋白质粘附性。通过动态光散射和电泳迁移率测量、紫外可见光谱、透射电子显微镜(TEM)、扫描电子显微镜(SEM)和激光共聚焦显微镜成像,对无洗涤的LbL聚电解质纳米胶囊组装过程、胶体稳定性和纳米颗粒形态进行了监测。

相似文献

1
Architectural layer-by-layer assembly of drug nanocapsules with PEGylated polyelectrolytes.
Soft Matter. 2012 Jan 1;8(36):9418-9427. doi: 10.1039/C2SM25683E. Epub 2012 Jun 25.
2
Layer-by-layer nanoencapsulation of camptothecin with improved activity.
Int J Pharm. 2014 Apr 25;465(1-2):218-27. doi: 10.1016/j.ijpharm.2014.01.041. Epub 2014 Feb 6.
3
Sonication-assisted Layer-by-Layer self-assembly nanoparticles for resveratrol delivery.
Mater Sci Eng C Mater Biol Appl. 2019 Dec;105:110022. doi: 10.1016/j.msec.2019.110022. Epub 2019 Jul 29.
4
Layer-by-layer assembly of liposomal nanoparticles with PEGylated polyelectrolytes enhances systemic delivery of multiple anticancer drugs.
Acta Biomater. 2014 Dec;10(12):5116-5127. doi: 10.1016/j.actbio.2014.08.021. Epub 2014 Aug 25.
5
Macrophage uptake of core-shell nanoparticles surface modified with poly(ethylene glycol).
Langmuir. 2006 Sep 12;22(19):8178-85. doi: 10.1021/la060951b.
7
In vitro interaction of polyelectrolyte nanocapsules with model cells.
Langmuir. 2014 Feb 4;30(4):1100-7. doi: 10.1021/la403610y. Epub 2014 Jan 17.
8
Pegylated polyelectrolyte nanoparticles containing paclitaxel as a promising candidate for drug carriers for passive targeting.
Colloids Surf B Biointerfaces. 2016 Jul 1;143:463-471. doi: 10.1016/j.colsurfb.2016.03.064. Epub 2016 Mar 23.
10
Controlled synthesis of calcium carbonate nanoparticles and stimuli-responsive multi-layered nanocapsules for oral drug delivery.
Int J Pharm. 2020 Jan 25;574:118866. doi: 10.1016/j.ijpharm.2019.118866. Epub 2019 Nov 23.

引用本文的文献

1
Effects of native and particulate polyphenols on DNA damage and cell viability after UV-C exposure.
Naunyn Schmiedebergs Arch Pharmacol. 2023 Sep;396(9):1923-1930. doi: 10.1007/s00210-023-02443-3. Epub 2023 Mar 3.
2
Curcumin-PLGA based nanocapsule for the fluorescence spectroscopic detection of dopamine.
RSC Adv. 2022 Oct 4;12(43):28245-28253. doi: 10.1039/d2ra01679f. eCollection 2022 Sep 28.
4
Micro- and Nanocapsules Based on Artificial Peptides.
Molecules. 2022 Feb 17;27(4):1373. doi: 10.3390/molecules27041373.
5
Biopolymer-Based Multilayer Capsules and Beads Made via Templating: Advantages, Hurdles and Perspectives.
Nanomaterials (Basel). 2021 Sep 26;11(10):2502. doi: 10.3390/nano11102502.
6
Conventional Nanosized Drug Delivery Systems for Cancer Applications.
Adv Exp Med Biol. 2021;1295:3-27. doi: 10.1007/978-3-030-58174-9_1.
7
Which Biopolymers Are Better for the Fabrication of Multilayer Capsules? A Comparative Study Using Vaterite CaCO as Templates.
ACS Appl Mater Interfaces. 2021 Jan 20;13(2):3259-3269. doi: 10.1021/acsami.0c21194. Epub 2021 Jan 7.
8
Morphology Control of Liposome - RAFT Oligomer Precursors to Complex Polymer Nanostructures.
Macromolecules. 2019 Dec 24;52(24):9476-9483. doi: 10.1021/acs.macromol.9b02182. Epub 2019 Dec 11.
10
Engineering nanolayered particles for modular drug delivery.
J Control Release. 2016 Oct 28;240:364-386. doi: 10.1016/j.jconrel.2016.01.040. Epub 2016 Jan 22.

本文引用的文献

1
Polyelectrolyte multilayer nanoshells with hydrophobic nanodomains for delivery of Paclitaxel.
J Control Release. 2012 May 10;159(3):403-412. doi: 10.1016/j.jconrel.2012.01.022. Epub 2012 Jan 24.
2
Exploring N-imidazolyl-O-carboxymethyl chitosan for high performance gene delivery.
Biomacromolecules. 2012 Jan 9;13(1):146-53. doi: 10.1021/bm201380e. Epub 2011 Dec 23.
3
Nanoparticle-based biocompatible and targeted drug delivery: characterization and in vitro studies.
Biomacromolecules. 2011 Sep 12;12(9):3205-12. doi: 10.1021/bm200681m. Epub 2011 Aug 11.
4
Top-down and bottom-up approaches in production of aqueous nanocolloids of low solubility drug paclitaxel.
Phys Chem Chem Phys. 2011 May 21;13(19):9014-9. doi: 10.1039/c0cp02549f. Epub 2011 Mar 25.
5
Converting poorly soluble materials into stable aqueous nanocolloids.
Langmuir. 2011 Feb 1;27(3):1212-7. doi: 10.1021/la1041635. Epub 2010 Dec 29.
6
Polymeric multilayer capsules in drug delivery.
Angew Chem Int Ed Engl. 2010 Sep 17;49(39):6954-73. doi: 10.1002/anie.200906266.
7
Sonication-assisted synthesis of polyelectrolyte-coated curcumin nanoparticles.
Langmuir. 2010 Jun 1;26(11):7679-81. doi: 10.1021/la101246a.
8
High cytotoxicity and resistant-cell reversal of novel paclitaxel loaded micelles by enhancing the molecular-target delivery of the drug.
Nanotechnology. 2007 Dec 12;18(49):495101. doi: 10.1088/0957-4484/18/49/495101. Epub 2007 Nov 2.
9
Paclitaxel nanocrystals for overcoming multidrug resistance in cancer.
Mol Pharm. 2010 Jun 7;7(3):863-9. doi: 10.1021/mp100012s.
10
Doubly amphiphilic poly(2-oxazoline)s as high-capacity delivery systems for hydrophobic drugs.
Biomaterials. 2010 Jun;31(18):4972-9. doi: 10.1016/j.biomaterials.2010.02.057. Epub 2010 Mar 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验