Suppr超能文献

哪种生物聚合物更适合用于多层胶囊的制造?以文石碳酸钙为模板的比较研究。

Which Biopolymers Are Better for the Fabrication of Multilayer Capsules? A Comparative Study Using Vaterite CaCO as Templates.

机构信息

Department of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Clifton Lane, NG11 8NS Nottingham, U.K.

Branch Bioanalytics and Bioprocesses, Fraunhofer Institute for Cell Therapy and Immunology, Am Mühlenberg 13-Golm, 14476 Potsdam, Germany.

出版信息

ACS Appl Mater Interfaces. 2021 Jan 20;13(2):3259-3269. doi: 10.1021/acsami.0c21194. Epub 2021 Jan 7.

Abstract

The polymer layer-by-layer assembly is accounted among the most attractive approaches for the design of advanced drug delivery platforms and biomimetic materials in 2D and 3D. The multilayer capsules can be made of synthetic or biologically relevant (, natural) polymers. The biopolymers are advantageous for bioapplications; however, the design of such "biocapsules" is more challengeable due to intrinsic complexity and lability of biopolymers. Until now, there are no systematic studies that report the formation mechanism for multilayer biocapsules templated upon CaCO crystals. This work evaluates the structure-property relationship for 16 types of capsules made of different biopolymers and proposes the capsule formation mechanism. The capsules have been fabricated upon mesoporous cores of vaterite CaCO, which served as a sacrificial template. Stable capsules of polycations poly-l-lysine or protamine and four different polyanions were successfully formed. However, capsules made using the polycation collagen and dextran amine underwent dissolution. Formation of the capsules has been correlated with the stability of the respective polyelectrolyte complexes at increased ionic strength. All formed capsules shrink upon core dissolution and the degree of shrinkage increased in the series of polyanions: heparin sulfate < dextran sulfate < chondroitin sulfate < hyaluronic acid. The same trend is observed for capsule adhesiveness to the glass surface, which correlates with the decrease in polymer charge density. The biopolymer length and charge density govern the capsule stability and internal structure; all formed biocapsules are of a matrix-type, other words are microgels. These findings can be translated to other biopolymers to predict biocapsule properties.

摘要

聚合物层层自组装被认为是设计先进的药物传递平台和二维和三维仿生材料的最有吸引力的方法之一。多层胶囊可以由合成或生物相关(的,天然)聚合物制成。生物聚合物有利于生物应用;然而,由于生物聚合物的固有复杂性和不稳定性,设计这种“生物胶囊”更具挑战性。到目前为止,还没有系统的研究报告在 CaCO3 晶体模板上形成多层生物胶囊的形成机制。这项工作评估了由不同生物聚合物制成的 16 种胶囊的结构-性能关系,并提出了胶囊形成机制。胶囊是在作为牺牲模板的方解石型 CaCO3 介孔核上制备的。成功制备了聚阳离子聚赖氨酸或鱼精蛋白和四种不同的聚阴离子的稳定胶囊。然而,使用聚阳离子胶原蛋白和葡聚糖胺制备的胶囊发生了溶解。胶囊的形成与各自的聚电解质复合物在增加离子强度时的稳定性相关。所有形成的胶囊在核溶解时都会收缩,并且在一系列聚阴离子中收缩程度增加:硫酸肝素<硫酸葡聚糖<硫酸软骨素<透明质酸。胶囊对玻璃表面的粘附性也表现出相同的趋势,这与聚合物电荷密度的降低有关。生物聚合物的长度和电荷密度决定了胶囊的稳定性和内部结构;所有形成的生物胶囊都是基质型的,换句话说就是微凝胶。这些发现可以转化为其他生物聚合物,以预测生物胶囊的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9861/7880531/de71d94ca2fc/am0c21194_0011.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验