Suppr超能文献

分子钟缺陷小鼠进食预期活动的昼夜节律调节。

Circadian regulation of food-anticipatory activity in molecular clock-deficient mice.

机构信息

Laboratory of Oral Chronobiology, Graduate School of Dentistry, Osaka University, Osaka, Japan.

出版信息

PLoS One. 2012;7(11):e48892. doi: 10.1371/journal.pone.0048892. Epub 2012 Nov 7.

Abstract

In the mammalian brain, the suprachiasmatic nucleus (SCN) of the anterior hypothalamus is considered to be the principal circadian pacemaker, keeping the rhythm of most physiological and behavioral processes on the basis of light/dark cycles. Because restriction of food availability to a certain time of day elicits anticipatory behavior even after ablation of the SCN, such behavior has been assumed to be under the control of another circadian oscillator. According to recent studies, however, mutant mice lacking circadian clock function exhibit normal food-anticipatory activity (FAA), a daily increase in locomotor activity preceding periodic feeding, suggesting that FAA is independent of the known circadian oscillator. To investigate the molecular basis of FAA, we examined oscillatory properties in mice lacking molecular clock components. Mice with SCN lesions or with mutant circadian periods were exposed to restricted feeding schedules at periods within and outside circadian range. Periodic feeding led to the entrainment of FAA rhythms only within a limited circadian range. Cry1(-/-) mice, which are known to be a "short-period mutant," entrained to a shorter period of feeding cycles than did Cry2(-/-) mice. This result indicated that the intrinsic periods of FAA rhythms are also affected by Cry deficiency. Bmal1(-/-) mice, deficient in another essential element of the molecular clock machinery, exhibited a pre-feeding increase of activity far from circadian range, indicating a deficit in circadian oscillation. We propose that mice possess a food-entrainable pacemaker outside the SCN in which canonical clock genes such as Cry1, Cry2 and Bmal1 play essential roles in regulating FAA in a circadian oscillatory manner.

摘要

在哺乳动物大脑中,下丘脑前部的视交叉上核(SCN)被认为是主要的生物钟起搏器,根据光/暗周期维持大多数生理和行为过程的节奏。由于限制食物供应到一天中的特定时间,即使在 SCN 切除后也会引起预期行为,因此这种行为被认为是受另一个生物钟振荡器的控制。然而,根据最近的研究,缺乏生物钟功能的突变小鼠表现出正常的食物预期活动(FAA),即在周期性进食之前,每日增加运动活动,这表明 FAA 独立于已知的生物钟振荡器。为了研究 FAA 的分子基础,我们检查了缺乏分子钟成分的小鼠的振荡特性。在 SCN 损伤或具有突变生物钟周期的小鼠中,在生物钟范围内和范围外的周期性进食时间表下暴露。周期性进食仅在有限的生物钟范围内引起 FAA 节律的同步。已知是“短周期突变体”的 Cry1(-/-)小鼠比 Cry2(-/-)小鼠适应更短的进食周期。这一结果表明,FAA 节律的固有周期也受到 Cry 缺乏的影响。另一个分子钟机制的必需元素 Bmal1(-/-)小鼠表现出远离生物钟范围的进食前活动增加,表明生物钟振荡存在缺陷。我们提出,小鼠在 SCN 之外具有食物可同步的起搏器,其中 Cry1、Cry2 和 Bmal1 等经典时钟基因以昼夜振荡方式调节 FAA 发挥重要作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验