Suppr超能文献

模拟LHCII-LHCII、PSII-LHCII和PSI-LHCII相互作用在状态转换中的作用。

Modeling the Role of LHCII-LHCII, PSII-LHCII, and PSI-LHCII Interactions in State Transitions.

作者信息

Wood William H J, Johnson Matthew P

机构信息

Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom.

Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom.

出版信息

Biophys J. 2020 Jul 21;119(2):287-299. doi: 10.1016/j.bpj.2020.05.034. Epub 2020 Jun 12.

Abstract

The light-dependent reactions of photosynthesis take place in the plant chloroplast thylakoid membrane, a complex three-dimensional structure divided into the stacked grana and unstacked stromal lamellae domains. Plants regulate the macro-organization of photosynthetic complexes within the thylakoid membrane to adapt to changing environmental conditions and avoid oxidative stress. One such mechanism is the state transition that regulates photosynthetic light harvesting and electron transfer. State transitions are driven by changes in the phosphorylation of light harvesting complex II (LHCII), which cause a decrease in grana diameter and stacking, a decrease in energetic connectivity between photosystem II (PSII) reaction centers, and an increase in the relative LHCII antenna size of photosystem I (PSI) compared to PSII. Phosphorylation is believed to drive these changes by weakening the intramembrane lateral PSII-LHCII and LHCII-LHCII interactions and the intermembrane stacking interactions between these complexes, while simultaneously increasing the affinity of LHCII for PSI. We investigated the relative roles and contributions of these three types of interaction to state transitions using a lattice-based model of the thylakoid membrane based on existing structural data, developing a novel algorithm to simulate protein complex dynamics. Monte Carlo simulations revealed that state transitions are unlikely to lead to a large-scale migration of LHCII from the grana to the stromal lamellae. Instead, the increased light harvesting capacity of PSI is largely due to the more efficient recruitment of LHCII already residing in the stromal lamellae into PSI-LHCII supercomplexes upon its phosphorylation. Likewise, the increased light harvesting capacity of PSII upon dephosphorylation was found to be driven by a more efficient recruitment of LHCII already residing in the grana into functional PSII-LHCII clusters, primarily driven by lateral interactions.

摘要

光合作用的光反应发生在植物叶绿体类囊体膜中,这是一种复杂的三维结构,分为堆叠的基粒和非堆叠的基质类囊体区域。植物调节类囊体膜内光合复合体的宏观组织,以适应不断变化的环境条件并避免氧化应激。一种这样的机制是状态转换,它调节光合光捕获和电子传递。状态转换由光捕获复合体II(LHCII)磷酸化的变化驱动,这会导致基粒直径和堆叠减少、光系统II(PSII)反应中心之间的能量连接性降低,以及与PSII相比光系统I(PSI)的相对LHCII天线大小增加。据信,磷酸化通过削弱膜内横向PSII-LHCII和LHCII-LHCII相互作用以及这些复合体之间的膜间堆叠相互作用来驱动这些变化,同时增加LHCII对PSI的亲和力。我们使用基于现有结构数据的类囊体膜晶格模型,研究了这三种相互作用对状态转换的相对作用和贡献,开发了一种新算法来模拟蛋白质复合体动力学。蒙特卡罗模拟表明,状态转换不太可能导致LHCII从基粒大规模迁移到基质类囊体。相反,PSI光捕获能力的增加很大程度上是由于已经存在于基质类囊体中的LHCII在磷酸化后更有效地募集到PSI-LHCII超复合体中。同样,去磷酸化后PSII光捕获能力的增加被发现是由已经存在于基粒中的LHCII更有效地募集到功能性PSII-LHCII簇中驱动的,主要是由横向相互作用驱动。

相似文献

引用本文的文献

本文引用的文献

3
Fundamental helical geometry consolidates the plant photosynthetic membrane.基础螺旋几何结构巩固了植物光合作用膜。
Proc Natl Acad Sci U S A. 2019 Oct 29;116(44):22366-22375. doi: 10.1073/pnas.1905994116. Epub 2019 Oct 14.
5
The relevance of dynamic thylakoid organisation to photosynthetic regulation.动态类囊体组织与光合作用调节的相关性。
Biochim Biophys Acta Bioenerg. 2020 Apr 1;1861(4):148039. doi: 10.1016/j.bbabio.2019.06.011. Epub 2019 Jun 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验