Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA.
Proc Natl Acad Sci U S A. 2012 Nov 27;109(48):19721-6. doi: 10.1073/pnas.1206629109. Epub 2012 Nov 12.
Most nucleosomes that package eukaryotic DNA are assembled during DNA replication, but chromatin structure is routinely disrupted in active regions of the genome. Replication-independent nucleosome replacement using the H3.3 histone variant efficiently repackages these regions, but how histones are recruited to these sites is unknown. Here, we use an inducible system that produces nucleosome-depleted chromatin at the Hsp70 genes in Drosophila to define steps in the mechanism of nucleosome replacement. We find that the Xnp chromatin remodeler and the Hira histone chaperone independently bind nucleosome-depleted chromatin. Surprisingly, these two factors are only displaced when new nucleosomes are assembled. H3.3 deposition assays reveal that Xnp and Hira are required for efficient nucleosome replacement, and double-mutants are lethal. We propose that Xnp and Hira recognize exposed DNA and serve as a binding platform for the efficient recruitment of H3.3 predeposition complexes to chromatin gaps. These results uncover the mechanisms by which eukaryotic cells actively prevent the exposure of DNA in the nucleus.
大多数包装真核 DNA 的核小体是在 DNA 复制过程中组装的,但在基因组的活性区域,染色质结构经常被打乱。使用 H3.3 组蛋白变体进行非复制依赖性核小体替换可以有效地重新包装这些区域,但组蛋白如何被招募到这些位点尚不清楚。在这里,我们使用一种诱导系统在果蝇的 Hsp70 基因中产生无核小体染色质,以定义核小体替换机制中的步骤。我们发现,Xnp 染色质重塑因子和 Hira 组蛋白伴侣独立地结合无核小体染色质。令人惊讶的是,只有当新的核小体组装时,这两种因子才会被取代。H3.3 沉积测定显示,Xnp 和 Hira 对于有效的核小体替换是必需的,并且双突变体是致命的。我们提出,Xnp 和 Hira 识别暴露的 DNA,并作为一个结合平台,用于高效招募 H3.3 预沉积复合物到染色质缺口。这些结果揭示了真核细胞主动防止细胞核中 DNA 暴露的机制。