Kwon Min-Seok, Kim Kyunga, Lee Sungyoung, Park Taesung
Interdisciplinary Program in Bioinformatics, Seoul National University, Gwanak-gu, Seoul 151-742, Korea.
Int J Data Min Bioinform. 2012;6(5):471-81. doi: 10.1504/ijdmb.2012.049301.
Multifactor dimensionality reduction (MDR) method has been widely applied to detect gene-gene interactions that are well recognized as playing an important role in understanding complex traits. However, because of an exhaustive analysis of MDR, the current MDR software has some limitations to be extended to the genome-wide association studies (GWAS) with a large number of genetic markers up to approximately 1 million. To overcome this computational problem, we developed CUDA (Compute Unified Device Architecture) based genome-wide association MDR (cuGWAM) software using efficient hardware accelerators, cuGWAM has better performance than CPU-based MDR methods and other GPU-based methods.
多因素降维(MDR)方法已被广泛应用于检测基因-基因相互作用,这种相互作用在理解复杂性状中起着重要作用,这一点已得到广泛认可。然而,由于MDR进行的是详尽分析,当前的MDR软件存在一些局限性,无法扩展到具有多达约100万个遗传标记的全基因组关联研究(GWAS)。为克服这一计算问题,我们使用高效硬件加速器开发了基于CUDA(统一计算设备架构)的全基因组关联MDR(cuGWAM)软件,cuGWAM比基于CPU的MDR方法和其他基于GPU的方法具有更好的性能。