Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
Curr Opin Biotechnol. 2013 Jun;24(3):489-97. doi: 10.1016/j.copbio.2012.10.008. Epub 2012 Nov 16.
Adding organic electron donors to stimulate microbial reduction of highly soluble U(VI) to less soluble U(IV) is a promising strategy for immobilizing uranium in contaminated subsurface environments. Studies suggest that diagnosing the in situ physiological status of the subsurface community during uranium bioremediation with environmental transcriptomic and proteomic techniques can identify factors potentially limiting U(VI) reduction activity. Models which couple genome-scale in silico representations of the metabolism of key microbial populations with geochemical and hydrological models may be able to predict the outcome of bioremediation strategies and aid in the development of new approaches. Concerns remain about the long-term stability of sequestered U(IV) minerals and the release of co-contaminants associated with Fe(III) oxides, which might be overcome through targeted delivery of electrons to select microorganisms using in situ electrodes.
向环境中添加有机电子供体来刺激微生物将高溶解性的 U(VI)还原为低溶解性的 U(IV),是一种在受污染的地下环境中固定铀的很有前途的策略。研究表明,利用环境转录组学和蛋白质组学技术来诊断铀生物修复过程中地下群落的原位生理状态,可以确定可能限制 U(VI)还原活性的因素。将关键微生物种群代谢的基于基因组规模的计算机模拟与地球化学和水文学模型相结合的模型,可能能够预测生物修复策略的结果,并有助于开发新的方法。人们仍然对被隔离的 U(IV)矿物的长期稳定性以及与 Fe(III)氧化物相关的共污染物的释放表示担忧,这可能可以通过使用原位电极有针对性地向选定微生物输送电子来克服。