Li Feng, Zhang Baocai, Long Xizi, Yu Huan, Shi Sicheng, You Zixuan, Liu Qijing, Li Chao, Tang Rui, Wu Shengbo, An Xingjuan, Li Yuanxiu, Shi Liang, Nealson Kenneth H, Song Hao
State Key Laboratory of Synthetic Biology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China.
Nat Commun. 2025 Mar 25;16(1):2882. doi: 10.1038/s41467-025-57497-z.
Electron shuttle plays a decisive role in extracellular electron transfer (EET) of exoelectrogens. However, neither identifying the most efficient electron shuttle molecule nor programming its optimal synthesis level that boosts EET has been established. Here, the phenazine-1-carboxylic acid (PCA) biosynthesis pathway is first constructed to synthesize PCA at an optimal level for EET in Shewanella oneidensis MR-1. To facilitate PCA transport, the porin OprF is expressed to improve cell membrane permeability, the cytotoxicity of which, however, impaired cell growth. To mitigate cytotoxicity, PCA biosensor is designed to dynamically decouple PCA biosynthesis and transport, resulting in the maximum output power density reaching 2.85 ± 0.10 W m, 33.75-fold higher than wild-type strain. Moreover, extensive analyses of cellular electrophysiology, metabolism, and behaviors reveal PCA shuttles electrons from cell to electrode, which is the dominant mechanism underlying PCA-boosted EET. We conclude dynamic synthesis and transport of PCA is an efficient strategy for enhancing EET.
电子穿梭体在产电微生物的胞外电子转移(EET)中起决定性作用。然而,目前尚未确定最有效的电子穿梭体分子,也未确定能促进EET的其最佳合成水平。在此,首先构建了吩嗪-1-羧酸(PCA)生物合成途径,以在最优水平合成PCA,用于嗜铁素还原地杆菌MR-1中的EET。为促进PCA转运,表达孔蛋白OprF以提高细胞膜通透性,然而其细胞毒性损害了细胞生长。为减轻细胞毒性,设计了PCA生物传感器以动态解耦PCA生物合成和转运,从而使最大输出功率密度达到2.85±0.10 W m,比野生型菌株高33.75倍。此外,对细胞电生理学、代谢和行为的广泛分析表明,PCA将电子从细胞穿梭到电极,这是PCA促进EET的主要机制。我们得出结论,PCA的动态合成和转运是增强EET的有效策略。