Suppr超能文献

用于小型模式生物(线虫、果蝇和斑马鱼)发育研究的微流控工具。

Microfluidic tools for developmental studies of small model organisms--nematodes, fruit flies, and zebrafish.

机构信息

School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA.

出版信息

Biotechnol J. 2013 Feb;8(2):192-205. doi: 10.1002/biot.201200129. Epub 2012 Nov 19.

Abstract

Studying the genetics of development with small model organisms such as the zebrafish (Danio Rerio), the fruit fly (Drosophila melanogaster), and the soil-dwelling nematode (Caenorhabditis elegans), provide unique opportunities for understanding related processes and diseases in humans. These model organisms also have potential for use in drug discovery and toxicity-screening applications. There have been sweeping developments in microfabrication and microfluidic technologies for manipulating and imaging small objects, including small model organisms, which allow high-throughput quantitative biological studies. Here, we review recent progress in microfluidic tools able to manipulate small organisms and project future directions and applications of these techniques and technologies.

摘要

利用小型模式生物(如斑马鱼、果蝇和土壤线虫)研究发育遗传学为理解人类相关过程和疾病提供了独特的机会。这些模式生物也有可能用于药物发现和毒性筛选应用。在操纵和成像小型物体(包括小型模式生物)的微制造和微流控技术方面取得了重大进展,这些技术可以实现高通量定量生物学研究。在这里,我们回顾了能够操纵小型生物的微流控工具的最新进展,并展望了这些技术的未来方向和应用。

相似文献

1
Microfluidic tools for developmental studies of small model organisms--nematodes, fruit flies, and zebrafish.
Biotechnol J. 2013 Feb;8(2):192-205. doi: 10.1002/biot.201200129. Epub 2012 Nov 19.
2
Drug Discovery in Fish, Flies, and Worms.
ILAR J. 2016 Dec;57(2):133-143. doi: 10.1093/ilar/ilw034.
3
Technologies for micromanipulating, imaging, and phenotyping small invertebrates and vertebrates.
Annu Rev Biomed Eng. 2011 Aug 15;13:185-217. doi: 10.1146/annurev-bioeng-071910-124703.
5
Microfluidics for mechanobiology of model organisms.
Methods Cell Biol. 2018;146:217-259. doi: 10.1016/bs.mcb.2018.05.010. Epub 2018 Jul 14.
6
Developmental genetics with model organisms.
Proc Natl Acad Sci U S A. 2022 Jul 26;119(30):e2122148119. doi: 10.1073/pnas.2122148119. Epub 2022 Jul 18.
7
Open access tool and microfluidic devices for phenotypic quantification of heart function of intact fruit fly and zebrafish larvae.
Comput Biol Med. 2021 May;132:104314. doi: 10.1016/j.compbiomed.2021.104314. Epub 2021 Mar 7.
8
Exploring the alternative: Fish, flies and worms as preclinical models for ALS.
Neurosci Lett. 2021 Aug 10;759:136041. doi: 10.1016/j.neulet.2021.136041. Epub 2021 Jun 10.
9
Fly-on-a-Chip: Microfluidics for Drosophila melanogaster Studies.
Integr Biol (Camb). 2019 Dec 31;11(12):425-443. doi: 10.1093/intbio/zyz037.
10
Wormometry-on-a-chip: Innovative technologies for in situ analysis of small multicellular organisms.
Cytometry A. 2011 Oct;79(10):799-813. doi: 10.1002/cyto.a.21070. Epub 2011 May 4.

引用本文的文献

1
Development of large-scale gastruloid array to identify aberrant developmental phenotypes.
APL Bioeng. 2025 Jun 10;9(2):026121. doi: 10.1063/5.0269550. eCollection 2025 Jun.
2
Microfluidics in High-Throughput Drug Screening: Organ-on-a-Chip and -Based Innovations.
Biosensors (Basel). 2024 Jan 21;14(1):55. doi: 10.3390/bios14010055.
3
Microfluidic-Assisted Sorting: Current Status and Future Prospects.
Cyborg Bionic Syst. 2023 Apr 14;4:0011. doi: 10.34133/cbsystems.0011. eCollection 2023.
4
SPIM-Flow: An Integrated Light Sheet and Microfluidics Platform for Hydrodynamic Studies of .
Biology (Basel). 2023 Jan 11;12(1):116. doi: 10.3390/biology12010116.
5
Using as a suitable platform for drug discovery from natural products in inflammatory bowel disease.
Front Pharmacol. 2022 Dec 5;13:1072715. doi: 10.3389/fphar.2022.1072715. eCollection 2022.
6
Microfluidic systems for modeling human development.
Development. 2022 Feb 1;149(3). doi: 10.1242/dev.199463. Epub 2022 Feb 14.
7
Microfluidic chips: recent advances, critical strategies in design, applications and future perspectives.
Microfluid Nanofluidics. 2021;25(12):99. doi: 10.1007/s10404-021-02502-2. Epub 2021 Oct 26.
8
Recent advances in critical nodes of embryo engineering technology.
Theranostics. 2021 May 25;11(15):7391-7424. doi: 10.7150/thno.58799. eCollection 2021.
10
A Microfluidic System for Stable and Continuous EEG Monitoring from Multiple Larval Zebrafish.
Sensors (Basel). 2020 Oct 19;20(20):5903. doi: 10.3390/s20205903.

本文引用的文献

1
Small molecule screening in zebrafish: swimming in potential drug therapies.
Wiley Interdiscip Rev Dev Biol. 2012 May-Jun;1(3):459-68. doi: 10.1002/wdev.37. Epub 2012 Feb 28.
2
Miniaturized embryo array for automated trapping, immobilization and microperfusion of zebrafish embryos.
PLoS One. 2012;7(5):e36630. doi: 10.1371/journal.pone.0036630. Epub 2012 May 14.
4
The structure of the nervous system of the nematode Caenorhabditis elegans.
Philos Trans R Soc Lond B Biol Sci. 1986 Nov 12;314(1165):1-340. doi: 10.1098/rstb.1986.0056.
5
Fully automated cellular-resolution vertebrate screening platform with parallel animal processing.
Lab Chip. 2012 Feb 21;12(4):711-6. doi: 10.1039/c1lc20849g. Epub 2011 Dec 8.
6
Fish and Chips: a microfluidic perfusion platform for monitoring zebrafish development.
Lab Chip. 2012 Mar 7;12(5):892-900. doi: 10.1039/c1lc20351g. Epub 2011 Dec 7.
10
High-throughput behavioral analysis in C. elegans.
Nat Methods. 2011 Jun 5;8(7):592-8. doi: 10.1038/nmeth.1625.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验