Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, USA.
Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, USA.
Nat Commun. 2021 Feb 18;12(1):1118. doi: 10.1038/s41467-021-21373-3.
Modern biomedical research and preclinical pharmaceutical development rely heavily on the phenotyping of small vertebrate models for various diseases prior to human testing. In this article, we demonstrate an acoustofluidic rotational tweezing platform that enables contactless, high-speed, 3D multispectral imaging and digital reconstruction of zebrafish larvae for quantitative phenotypic analysis. The acoustic-induced polarized vortex streaming achieves contactless and rapid (~1 s/rotation) rotation of zebrafish larvae. This enables multispectral imaging of the zebrafish body and internal organs from different viewing perspectives. Moreover, we develop a 3D reconstruction pipeline that yields accurate 3D models based on the multi-view images for quantitative evaluation of basic morphological characteristics and advanced combinations of metrics. With its contactless nature and advantages in speed and automation, our acoustofluidic rotational tweezing system has the potential to be a valuable asset in numerous fields, especially for developmental biology, small molecule screening in biochemistry, and pre-clinical drug development in pharmacology.
现代生物医学研究和临床前药物开发在进行人体测试之前,严重依赖于对各种疾病的小型脊椎动物模型进行表型分析。在本文中,我们展示了一种声流控旋转捕捉平台,该平台能够对斑马鱼幼虫进行非接触式、高速、3D 多光谱成像和数字重建,以进行定量表型分析。声致极化涡旋流实现了斑马鱼幼虫的非接触式和快速(~1s/转)旋转。这使得可以从不同的观察角度对斑马鱼的身体和内部器官进行多光谱成像。此外,我们开发了一种 3D 重建管道,该管道基于多视图图像生成准确的 3D 模型,用于对基本形态特征和高级度量组合进行定量评估。由于其非接触式特性以及在速度和自动化方面的优势,我们的声流控旋转捕捉系统有可能在许多领域具有重要应用价值,特别是在发育生物学、生物化学中小分子筛选以及药理学临床前药物开发领域。