Suppr超能文献

三相尖峰时间依赖可塑性组织网络以产生稳健的神经活动序列。

Triphasic spike-timing-dependent plasticity organizes networks to produce robust sequences of neural activity.

机构信息

School of Computing, University of Leeds Leeds, UK.

出版信息

Front Comput Neurosci. 2012 Nov 12;6:88. doi: 10.3389/fncom.2012.00088. eCollection 2012.

Abstract

Synfire chains have long been proposed to generate precisely timed sequences of neural activity. Such activity has been linked to numerous neural functions including sensory encoding, cognitive and motor responses. In particular, it has been argued that synfire chains underlie the precise spatiotemporal firing patterns that control song production in a variety of songbirds. Previous studies have suggested that the development of synfire chains requires either initial sparse connectivity or strong topological constraints, in addition to any synaptic learning rules. Here, we show that this necessity can be removed by using a previously reported but hitherto unconsidered spike-timing-dependent plasticity (STDP) rule and activity-dependent excitability. Under this rule the network develops stable synfire chains that possess a non-trivial, scalable multi-layer structure, in which relative layer sizes appear to follow a universal function. Using computational modeling and a coarse grained random walk model, we demonstrate the role of the STDP rule in growing, molding and stabilizing the chain, and link model parameters to the resulting structure.

摘要

同步放电链长期以来一直被认为可以产生精确定时的神经活动序列。这种活动与许多神经功能有关,包括感觉编码、认知和运动反应。特别是,有人认为,同步放电链是控制各种鸣禽歌唱产生的精确时空发射模式的基础。以前的研究表明,同步放电链的发展除了需要任何突触学习规则外,还需要初始稀疏连接或强拓扑约束。在这里,我们通过使用以前报道但迄今为止尚未被考虑的尖峰时间依赖可塑性(STDP)规则和活动依赖性兴奋性来证明这种必要性可以被消除。在这个规则下,网络发展出稳定的同步放电链,具有非平凡的、可扩展的多层结构,其中相对层的大小似乎遵循一个通用的函数。使用计算建模和粗粒随机游走模型,我们演示了 STDP 规则在生长、塑造和稳定链中的作用,并将模型参数与得到的结构联系起来。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45ed/3495293/c727f32bae9f/fncom-06-00088-g0001.jpg

相似文献

1
Triphasic spike-timing-dependent plasticity organizes networks to produce robust sequences of neural activity.
Front Comput Neurosci. 2012 Nov 12;6:88. doi: 10.3389/fncom.2012.00088. eCollection 2012.
2
Long Synfire Chains Emerge by Spike-Timing Dependent Plasticity Modulated by Population Activity.
Int J Neural Syst. 2017 Dec;27(8):1750044. doi: 10.1142/S0129065717500447. Epub 2017 Sep 7.
3
Potentiation decay of synapses and length distributions of synfire chains self-organized in recurrent neural networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Dec;88(6):062716. doi: 10.1103/PhysRevE.88.062716. Epub 2013 Dec 18.
4
STDP provides the substrate for igniting synfire chains by spatiotemporal input patterns.
Neural Comput. 2008 Feb;20(2):415-35. doi: 10.1162/neco.2007.11-05-043.
5
Robust development of synfire chains from multiple plasticity mechanisms.
Front Comput Neurosci. 2014 Jun 30;8:66. doi: 10.3389/fncom.2014.00066. eCollection 2014.
6
Self-organization of synchronous activity propagation in neuronal networks driven by local excitation.
Front Comput Neurosci. 2015 Jun 4;9:69. doi: 10.3389/fncom.2015.00069. eCollection 2015.
8
Spatio-temporal pattern recognizers using spiking neurons and spike-timing-dependent plasticity.
Front Comput Neurosci. 2012 Oct 10;6:84. doi: 10.3389/fncom.2012.00084. eCollection 2012.
9
Spike-timing computation properties of a feed-forward neural network model.
Front Comput Neurosci. 2014 Jan 28;8:5. doi: 10.3389/fncom.2014.00005. eCollection 2014.

引用本文的文献

2
3
From synapse to network: models of information storage and retrieval in neural circuits.
Curr Opin Neurobiol. 2021 Oct;70:24-33. doi: 10.1016/j.conb.2021.05.005. Epub 2021 Jun 24.
4
Unsupervised Learning of Persistent and Sequential Activity.
Front Comput Neurosci. 2020 Jan 17;13:97. doi: 10.3389/fncom.2019.00097. eCollection 2019.
5
Learning spatiotemporal signals using a recurrent spiking network that discretizes time.
PLoS Comput Biol. 2020 Jan 21;16(1):e1007606. doi: 10.1371/journal.pcbi.1007606. eCollection 2020 Jan.
6
Memory replay in balanced recurrent networks.
PLoS Comput Biol. 2017 Jan 30;13(1):e1005359. doi: 10.1371/journal.pcbi.1005359. eCollection 2017 Jan.
7
Oscillation-induced signal transmission and gating in neural circuits.
PLoS Comput Biol. 2014 Dec 11;10(12):e1003940. doi: 10.1371/journal.pcbi.1003940. eCollection 2014 Dec.
8
Robust development of synfire chains from multiple plasticity mechanisms.
Front Comput Neurosci. 2014 Jun 30;8:66. doi: 10.3389/fncom.2014.00066. eCollection 2014.
9
An attractor-based complexity measurement for Boolean recurrent neural networks.
PLoS One. 2014 Apr 11;9(4):e94204. doi: 10.1371/journal.pone.0094204. eCollection 2014.
10
Pattern association and consolidation emerges from connectivity properties between cortex and hippocampus.
PLoS One. 2014 Jan 3;9(1):e85016. doi: 10.1371/journal.pone.0085016. eCollection 2014.

本文引用的文献

1
High-capacity embedding of synfire chains in a cortical network model.
J Comput Neurosci. 2013 Apr;34(2):185-209. doi: 10.1007/s10827-012-0413-9. Epub 2012 Aug 11.
2
Limits to the development of feed-forward structures in large recurrent neuronal networks.
Front Comput Neurosci. 2011 Feb 14;4:160. doi: 10.3389/fncom.2010.00160. eCollection 2011.
3
A reafferent and feed-forward model of song syntax generation in the Bengalese finch.
J Comput Neurosci. 2011 Nov;31(3):509-32. doi: 10.1007/s10827-011-0318-z. Epub 2011 Mar 15.
4
Pyramidal neuron conductance state gates spike-timing-dependent plasticity.
J Neurosci. 2010 Nov 24;30(47):15713-25. doi: 10.1523/JNEUROSCI.3068-10.2010.
5
Support for a synaptic chain model of neuronal sequence generation.
Nature. 2010 Nov 18;468(7322):394-9. doi: 10.1038/nature09514. Epub 2010 Oct 24.
6
A bird's eye view of neural circuit formation.
Curr Opin Neurobiol. 2011 Feb;21(1):124-31. doi: 10.1016/j.conb.2010.08.001. Epub 2010 Oct 11.
7
Precise spatiotemporal patterns among visual cortical areas and their relation to visual stimulus processing.
J Neurosci. 2010 Aug 18;30(33):11232-45. doi: 10.1523/JNEUROSCI.5177-09.2010.
8
Developmental sensory experience balances cortical excitation and inhibition.
Nature. 2010 Jun 17;465(7300):932-6. doi: 10.1038/nature09119.
9
Flexible traffic control of the synfire-mode transmission by inhibitory modulation: nonlinear noise reduction.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jan;81(1 Pt 1):011913. doi: 10.1103/PhysRevE.81.011913. Epub 2010 Jan 22.
10
Generating variable birdsong syllable sequences with branching chain networks in avian premotor nucleus HVC.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Nov;80(5 Pt 1):051902. doi: 10.1103/PhysRevE.80.051902. Epub 2009 Nov 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验