School of Computing, University of Leeds Leeds, UK.
Front Comput Neurosci. 2012 Nov 12;6:88. doi: 10.3389/fncom.2012.00088. eCollection 2012.
Synfire chains have long been proposed to generate precisely timed sequences of neural activity. Such activity has been linked to numerous neural functions including sensory encoding, cognitive and motor responses. In particular, it has been argued that synfire chains underlie the precise spatiotemporal firing patterns that control song production in a variety of songbirds. Previous studies have suggested that the development of synfire chains requires either initial sparse connectivity or strong topological constraints, in addition to any synaptic learning rules. Here, we show that this necessity can be removed by using a previously reported but hitherto unconsidered spike-timing-dependent plasticity (STDP) rule and activity-dependent excitability. Under this rule the network develops stable synfire chains that possess a non-trivial, scalable multi-layer structure, in which relative layer sizes appear to follow a universal function. Using computational modeling and a coarse grained random walk model, we demonstrate the role of the STDP rule in growing, molding and stabilizing the chain, and link model parameters to the resulting structure.
同步放电链长期以来一直被认为可以产生精确定时的神经活动序列。这种活动与许多神经功能有关,包括感觉编码、认知和运动反应。特别是,有人认为,同步放电链是控制各种鸣禽歌唱产生的精确时空发射模式的基础。以前的研究表明,同步放电链的发展除了需要任何突触学习规则外,还需要初始稀疏连接或强拓扑约束。在这里,我们通过使用以前报道但迄今为止尚未被考虑的尖峰时间依赖可塑性(STDP)规则和活动依赖性兴奋性来证明这种必要性可以被消除。在这个规则下,网络发展出稳定的同步放电链,具有非平凡的、可扩展的多层结构,其中相对层的大小似乎遵循一个通用的函数。使用计算建模和粗粒随机游走模型,我们演示了 STDP 规则在生长、塑造和稳定链中的作用,并将模型参数与得到的结构联系起来。