Suppr超能文献

具有异质学习规则的网络中顺序检索速度的动态控制。

Dynamic control of sequential retrieval speed in networks with heterogeneous learning rules.

机构信息

Department of Neurobiology, Duke University, Durham, United States.

Department of Physics, Duke University, Durham, United States.

出版信息

Elife. 2024 Aug 28;12:RP88805. doi: 10.7554/eLife.88805.

Abstract

Temporal rescaling of sequential neural activity has been observed in multiple brain areas during behaviors involving time estimation and motor execution at variable speeds. Temporally asymmetric Hebbian rules have been used in network models to learn and retrieve sequential activity, with characteristics that are qualitatively consistent with experimental observations. However, in these models sequential activity is retrieved at a fixed speed. Here, we investigate the effects of a heterogeneity of plasticity rules on network dynamics. In a model in which neurons differ by the degree of temporal symmetry of their plasticity rule, we find that retrieval speed can be controlled by varying external inputs to the network. Neurons with temporally symmetric plasticity rules act as brakes and tend to slow down the dynamics, while neurons with temporally asymmetric rules act as accelerators of the dynamics. We also find that such networks can naturally generate separate 'preparatory' and 'execution' activity patterns with appropriate external inputs.

摘要

在涉及时间估计和变速运动执行的行为中,多个脑区的序列神经活动已经被观察到有时间尺度重定标现象。在网络模型中,使用时间不对称的赫布学习和检索序列活动规则,其特征与实验观察定性一致。然而,在这些模型中,序列活动是在固定速度下检索的。在这里,我们研究了可塑性规则的异质性对网络动态的影响。在一个神经元的可塑性规则的时间对称性程度不同的模型中,我们发现通过改变网络的外部输入可以控制检索速度。具有时间对称可塑性规则的神经元起刹车作用,往往会降低动力学速度,而具有时间不对称规则的神经元则是动力学的加速器。我们还发现,这样的网络可以在适当的外部输入下自然地产生单独的“预备”和“执行”活动模式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac4c/11357343/6487b1856848/elife-88805-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验