CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Bordeaux, France.
PLoS One. 2012;7(11):e49639. doi: 10.1371/journal.pone.0049639. Epub 2012 Nov 16.
Mitochondria are highly dynamic organelles that continuously move, fuse and divide. Mitochondrial dynamics modulate overall mitochondrial morphology and are essential for the proper function, maintenance and transmission of mitochondria and mitochondrial DNA (mtDNA). We have investigated mitochondrial fusion in yeast cells with severe defects in oxidative phosphorylation (OXPHOS) due to removal or various specific mutations of mtDNA. We find that, under fermentative conditions, OXPHOS deficient cells maintain normal levels of cellular ATP and ADP but display a reduced mitochondrial inner membrane potential. We demonstrate that, despite metabolic compensation by glycolysis, OXPHOS defects are associated to a selective inhibition of inner but not outer membrane fusion. Fusion inhibition was dominant and hampered the fusion of mutant mitochondria with wild-type mitochondria. Inhibition of inner membrane fusion was not systematically associated to changes of mitochondrial distribution and morphology, nor to changes in the isoform pattern of Mgm1, the major fusion factor of the inner membrane. However, inhibition of inner membrane fusion correlated with specific alterations of mitochondrial ultrastructure, notably with the presence of aligned and unfused inner membranes that are connected to two mitochondrial boundaries. The fusion inhibition observed upon deletion of OXPHOS related genes or upon removal of the entire mtDNA was similar to that observed upon introduction of point mutations in the mitochondrial ATP6 gene that are associated to neurogenic ataxia and retinitis pigmentosa (NARP) or to maternally inherited Leigh Syndrome (MILS) in humans. Our findings indicate that the consequences of mtDNA mutations may not be limited to OXPHOS defects but may also include alterations in mitochondrial fusion. Our results further imply that, in healthy cells, the dominant inhibition of fusion could mediate the exclusion of OXPHOS-deficient mitochondria from the network of functional, fusogenic mitochondria.
线粒体是高度动态的细胞器,不断地移动、融合和分裂。线粒体动力学调节整体线粒体形态,对于线粒体和线粒体 DNA(mtDNA)的正常功能、维持和传递至关重要。我们研究了由于 mtDNA 的去除或各种特定突变导致氧化磷酸化(OXPHOS)严重缺陷的酵母细胞中的线粒体融合。我们发现,在发酵条件下,OXPHOS 缺陷细胞维持正常的细胞 ATP 和 ADP 水平,但显示出降低的线粒体内膜电位。我们证明,尽管糖酵解进行代谢补偿,OXPHOS 缺陷与内膜融合的选择性抑制有关,但与外膜融合无关。融合抑制是主要的,并阻碍了突变线粒体与野生型线粒体的融合。内膜融合的抑制并不与线粒体分布和形态的变化,也不与 Mgm1(内膜的主要融合因子)的同工型模式的变化系统相关,Mgm1 是主要的融合因子。然而,内膜融合的抑制与线粒体超微结构的特定改变相关,特别是与对齐和未融合的内膜的存在相关,这些内膜与两个线粒体边界相连。在删除与 OXPHOS 相关的基因或去除整个 mtDNA 时观察到的融合抑制与在引入与神经源性共济失调和视网膜色素变性(NARP)或母系遗传 Leigh 综合征(MILS)相关的线粒体 ATP6 基因突变时观察到的融合抑制相似。我们的发现表明,mtDNA 突变的后果可能不仅限于 OXPHOS 缺陷,还可能包括线粒体融合的改变。我们的结果进一步表明,在健康细胞中,融合的主要抑制可能介导了 OXPHOS 缺陷线粒体从功能融合的线粒体网络中的排除。