Nanobiosensors and Bioanalytical Applications Group, Research Center on Nanoscience and Nanotechnology (CIN2), CSIC and CIBER-BBN, Barcelona, Spain.
J Colloid Interface Sci. 2013 Mar 1;393:402-10. doi: 10.1016/j.jcis.2012.10.040. Epub 2012 Nov 1.
Reliable immobilization of bioreceptors over any sensor surface is the most crucial step for achieving high performance, selective and sensitive biosensor devices able to analyze human samples without the need of previous processing. With this aim, we have implemented an optimized scheme to covalently biofunctionalize the sensor area of a novel nanophotonic interferometric biosensor. The proposed method is based on the ex-situ silanization of the silicon nitride transducer surface by the use of a carboxyl water soluble silane, the carboxyethylsilanetriol sodium salt (CTES). The use of an organosilane stable in water entails advantages in comparison with usual trialkoxysilanes such as avoiding the generation of organic waste and leading to the assembly of compact monolayers due to the high dielectric constant of water. Additionally, cross-linking is prevented when the conditions (e.g. immersion time, concentration of silane) are optimized. This covalent strategy is followed by the bioreceptor linkage on the sensor area surface using two different approaches: an in-flow patterning and a microcontact printing using a biodeposition system. The performance of the different bioreceptor layers assembled is compared by the real-time and label-free immunosensing of the proteins BSA/mAb BSA, employed as a model molecular pair. Although the results demonstrated that both strategies provide the biosensor with a stable biological interface, the performance of the bioreceptor layer assembled by microcontact printing slightly improves the biosensing capabilities of the photonic biosensor.
可靠地将生物受体固定在任何传感器表面上是实现高性能、选择性和灵敏生物传感器设备的最关键步骤,这些设备能够在无需预先处理的情况下分析人体样本。为此,我们实施了一种优化方案,以共价键合新型纳米光子干涉生物传感器的传感器区域。该方法基于使用水溶性羧基硅烷,即羧乙基硅烷三醇钠盐(CTES)对氮化硅换能器表面进行原位硅烷化。与通常的三烷氧基硅烷相比,使用在水中稳定的有机硅烷具有优势,因为它避免了有机废物的产生,并由于水的高介电常数导致组装出紧密的单层。此外,当优化条件(例如浸没时间、硅烷浓度)时,可防止交联。在传感器区域表面上使用两种不同方法进行生物受体键合,遵循这种共价策略:使用生物沉积系统的流动图案和微接触印刷。通过实时和无标记检测作为模型分子对的 BSA/mAb BSA 蛋白,比较了组装的不同生物受体层的性能。尽管结果表明这两种策略都为生物传感器提供了稳定的生物界面,但通过微接触印刷组装的生物受体层略微提高了光子生物传感器的生物传感能力。