Suppr超能文献

采用图案超疏水平台对小型化 3D 多孔支架进行组合式芯片研究。

Combinatorial on-chip study of miniaturized 3D porous scaffolds using a patterned superhydrophobic platform.

机构信息

3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue, Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal.

出版信息

Small. 2013 Mar 11;9(5):768-78. doi: 10.1002/smll.201201436. Epub 2012 Nov 21.

Abstract

One of the main challenges in tissue engineering (TE) is to obtain optimized products, combining biomaterials, cells and soluble factors able to stimulate tissue regeneration. Multiple combinations may be considered by changing the conditions among these three factors. The unpredictable response of each combination requires time-consuming tests. High-throughput methodologies have been proposed to master such complex analyses in TE. Usually, these tests are performed using cells cultured into 2D biomaterials or by dispensing arrays of cell-loaded hydrogels. For the first time an on-chip combinatorial study of 3D miniaturized porous scaffolds is proposed, using a patterned bioinspired superhydrophobic platform. Arrays of biomaterials are dispensed and processed in situ as porous scaffolds with distinct composition, surface characteristics, porosity/pore size, and mechanical properties. On-chip porosity, pore size, and mechanical properties of scaffolds based on chitosan and alginate are assessed by adapting microcomputed tomography equipment and a dynamic mechanical analyzer, as well as cell response after 24 hours. The interactions between cell types of two distinct origins-osteoblast-like and fibroblasts-and the scaffolds modified with fibronectin are studied and validated by comparison with conventional destructive methods (dsDNA quantification and MTS tests). Physical and biological on-chip analyses are coherent with the conventional measures, and conclusions about the most favorable conditions for each cell type are taken.

摘要

组织工程(TE)面临的主要挑战之一是获得优化的产品,将生物材料、细胞和可溶性因子结合起来,以刺激组织再生。可以通过改变这三个因素之间的条件来考虑多种组合。每种组合的不可预测的反应都需要耗时的测试。高通量方法已被提出用于掌握 TE 中的这种复杂分析。通常,这些测试是使用在 2D 生物材料中培养的细胞或通过分配细胞负载水凝胶的阵列来进行的。本文首次提出了使用图案化仿生超疏水平台对 3D 微型多孔支架进行组合研究。生物材料的阵列被分配并原位处理成具有不同组成、表面特性、孔隙率/孔径和机械性能的多孔支架。通过适应微计算机断层扫描设备和动态机械分析仪,以及 24 小时后细胞反应,评估了基于壳聚糖和海藻酸盐的支架的片上孔隙率、孔径和机械性能。通过与传统破坏性方法(dsDNA 定量和 MTS 测试)进行比较,研究和验证了两种不同来源的细胞类型-成骨样细胞和纤维母细胞-与纤连蛋白修饰的支架之间的相互作用。物理和生物学的片上分析与常规测量结果一致,并得出了关于每种细胞类型最有利条件的结论。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验