Suppr超能文献

一种用于口腔癌进展建模的多尺度和多参数方法。

A multiscale and multiparametric approach for modeling the progression of oral cancer.

机构信息

Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, GR45110 Ioannina, Greece.

出版信息

BMC Med Inform Decis Mak. 2012 Nov 22;12:136. doi: 10.1186/1472-6947-12-136.

Abstract

BACKGROUND

In this work, we propose a multilevel and multiparametric approach in order to model the growth and progression of oral squamous cell carcinoma (OSCC) after remission. OSCC constitutes the major neoplasm of the head and neck region, exhibiting a quite aggressive nature, often leading to unfavorable prognosis.

METHODS

We formulate a Decision Support System assembling a multitude of heterogeneous data sources (clinical, imaging tissue and blood genomic), aiming to capture all manifestations of the disease. Our primary aim is to identify the factors that dictate OSCC progression and subsequently predict potential relapses of the disease. The discrimination potential of each source of data is initially explored separately, and afterwards the individual predictions are combined to yield a consensus decision achieving complete discrimination between patients with and without a disease relapse. Moreover, we collect and analyze gene expression data from circulating blood cells throughout the follow-up period in consecutive time-slices, in order to model the temporal dimension of the disease. For this purpose a Dynamic Bayesian Network (DBN) is employed which is able to capture in a transparent manner the underlying mechanism dictating the disease evolvement, and employ it for monitoring the status and prognosis of the patients after remission.

RESULTS

By feeding as input to the DBN data from the baseline visit we achieve accuracy of 86%, which is further improved to complete discrimination when data from the first follow-up visit are also employed.

CONCLUSIONS

Knowing in advance the progression of the disease, i.e. identifying groups of patients with higher/lower risk of reoccurrence, we are able to determine the subsequent treatment protocol in a more personalized manner.

摘要

背景

在这项工作中,我们提出了一种多层次和多参数的方法,以便对缓解后的口腔鳞状细胞癌(OSCC)的生长和进展进行建模。OSCC 构成了头颈部区域的主要肿瘤,具有相当侵袭性的性质,常常导致不良的预后。

方法

我们构建了一个决策支持系统,汇集了多种异构数据源(临床、成像组织和血液基因组),旨在捕捉疾病的所有表现。我们的主要目标是确定决定 OSCC 进展的因素,然后预测疾病的潜在复发。单独探索每个数据源的区分潜力,然后将个体预测组合起来,以达成疾病缓解患者和复发患者之间的完全区分。此外,我们在连续的时间片中收集和分析来自循环血细胞的基因表达数据,以对疾病的时间维度进行建模。为此,我们采用了一个动态贝叶斯网络(DBN),它能够以透明的方式捕捉决定疾病演变的潜在机制,并将其用于监测患者缓解后的状态和预后。

结果

通过将基线就诊时的数据输入到 DBN 中,我们实现了 86%的准确率,当第一次随访时的数据也被纳入时,准确率进一步提高到完全区分。

结论

提前了解疾病的进展,即识别具有更高/更低复发风险的患者群体,我们能够以更个性化的方式确定后续的治疗方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ceaf/3560119/41523f87b37c/1472-6947-12-136-1.jpg

相似文献

1
A multiscale and multiparametric approach for modeling the progression of oral cancer.
BMC Med Inform Decis Mak. 2012 Nov 22;12:136. doi: 10.1186/1472-6947-12-136.
2
Multiparametric decision support system for the prediction of oral cancer reoccurrence.
IEEE Trans Inf Technol Biomed. 2012 Nov;16(6):1127-34. doi: 10.1109/TITB.2011.2165076. Epub 2011 Aug 18.
3
A Bayesian Network-based approach for discovering oral cancer candidate biomarkers.
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:7663-6. doi: 10.1109/EMBC.2015.7320167.
4
Gene expression profiling towards the prediction of oral cancer reoccurrence.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:8307-10. doi: 10.1109/IEMBS.2011.6092048.
5
Prediction of oral cancer recurrence using dynamic Bayesian networks.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:5275-5278. doi: 10.1109/EMBC.2016.7591917.
8
MicroRNA expression as predictor of local recurrence risk in oral squamous cell carcinoma.
Head Neck. 2016 Apr;38 Suppl 1:E189-97. doi: 10.1002/hed.23969. Epub 2015 Jun 24.

引用本文的文献

2
Applications of Artificial Intelligence in Dental Medicine: A Critical Review.
Int Dent J. 2025 Apr;75(2):474-486. doi: 10.1016/j.identj.2024.11.009. Epub 2025 Jan 21.
3
The contribution of artificial intelligence to reducing the diagnostic delay in oral cancer.
Oral Oncol. 2021 May;116:105254. doi: 10.1016/j.oraloncology.2021.105254. Epub 2021 Mar 9.
4
[Advances in the application of machine learning in maxillofacial cysts and tumors].
Hua Xi Kou Qiang Yi Xue Za Zhi. 2020 Dec 1;38(6):687-691. doi: 10.7518/hxkq.2020.06.014.
5
Improving prediction performance of colon cancer prognosis based on the integration of clinical and multi-omics data.
BMC Med Inform Decis Mak. 2020 Feb 7;20(1):22. doi: 10.1186/s12911-020-1043-1.
6
Prognostic significance of FOXM1 in oral squamous cell carcinoma patients treated by docetaxel-containing regimens.
Mol Clin Oncol. 2019 Jan;10(1):29-36. doi: 10.3892/mco.2018.1770. Epub 2018 Nov 19.
8
Machine learning applications in cancer prognosis and prediction.
Comput Struct Biotechnol J. 2014 Nov 15;13:8-17. doi: 10.1016/j.csbj.2014.11.005. eCollection 2015.
9
Estimating the optimal threshold for a diagnostic biomarker in case of complex biomarker distributions.
BMC Med Inform Decis Mak. 2014 Jun 14;14:53. doi: 10.1186/1472-6947-14-53.

本文引用的文献

2
Gene expression profiling predicts the development of oral cancer.
Cancer Prev Res (Phila). 2011 Feb;4(2):218-29. doi: 10.1158/1940-6207.CAPR-10-0155.
4
A Large-scale genetic association study of esophageal adenocarcinoma risk.
Carcinogenesis. 2010 Jul;31(7):1259-63. doi: 10.1093/carcin/bgq092. Epub 2010 May 7.
5
Personalized smoking cessation: interactions between nicotine dose, dependence and quit-success genotype score.
Mol Med. 2010 Jul-Aug;16(7-8):247-53. doi: 10.2119/molmed.2009.00159. Epub 2010 Mar 17.
6
Recurrence interval affects survival after local relapse of oral cancer.
Oral Oncol. 2009 Aug;45(8):687-91. doi: 10.1016/j.oraloncology.2008.10.011. Epub 2008 Dec 17.
7
Recent advances in head and neck cancer.
N Engl J Med. 2008 Sep 11;359(11):1143-54. doi: 10.1056/NEJMra0707975.
10
Tissue biomarkers for diagnosis & management of oral squamous cell carcinoma.
Alpha Omegan. 2007;100(4):182-9. doi: 10.1016/j.aodf.2007.10.014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验