Laboratory of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.
Cancer Gene Ther. 2013 Jan;20(1):57-64. doi: 10.1038/cgt.2012.85. Epub 2012 Nov 23.
Angiogenesis is required for normal physiologic processes, but it is also involved in tumor growth, progression and metastasis. Here, we report the development of an immune-based antiangiogenic strategy based on the generation of T lymphocytes that possess killing specificity for cells expressing vascular endothelial growth factor receptor 2 (VEGFR2). To target VEGFR2-expressing cells, we engineered cytotoxic T lymphocyte (CTL) expressing chimeric T-cell receptors (cTCR-CTL) comprised of a single-chain variable fragment (scFv) against VEGFR2 linked to an intracellular signaling sequence derived from the CD3ζ chain of the TCR and CD28 by retroviral gene transduction methods. The cTCR-CTL exhibited efficient killing specificity against VEGFR2 and a tumor-targeting function in vitro and in vivo. Reflecting such abilities, we confirmed that the cTCR-CTL strongly inhibited the growth of a variety of syngeneic tumors after adoptive transfer into tumor-bearing mice without consequent damage to normal tissue. In addition, CTL expressing both cTCR and tumor-specific TCR induced complete tumor regression due to enhanced tumor infiltration by the CTL and long-term antigen-specific function. These findings provide evidence that the tumor vessel-injuring ability improved the antitumor effect of CTLs in adoptive immunotherapy for a broad range of cancers by inducing immune-mediated destruction of the tumor neovasculature.
血管生成对于正常的生理过程是必需的,但它也参与肿瘤的生长、进展和转移。在这里,我们报告了一种基于生成具有杀伤特异性的 T 淋巴细胞的免疫抗血管生成策略的发展,这些 T 淋巴细胞针对表达血管内皮生长因子受体 2(VEGFR2)的细胞。为了靶向表达 VEGFR2 的细胞,我们通过逆转录病毒基因转导方法,设计了表达嵌合 T 细胞受体(cTCR-CTL)的细胞毒性 T 淋巴细胞(CTL),该受体由针对 VEGFR2 的单链可变片段(scFv)与 TCR 的 CD3ζ 链和 CD28 衍生的细胞内信号序列相连。cTCR-CTL 对 VEGFR2 表现出高效的杀伤特异性,并具有体外和体内的肿瘤靶向功能。反映出这种能力,我们证实 cTCR-CTL 在过继转移到荷瘤小鼠后,强烈抑制了各种同源肿瘤的生长,而不会对正常组织造成损害。此外,表达 cTCR 和肿瘤特异性 TCR 的 CTL 由于 CTL 的肿瘤浸润增强和长期的抗原特异性功能,导致完全的肿瘤消退。这些发现提供了证据,表明通过诱导免疫介导的肿瘤新血管破坏,肿瘤血管损伤能力提高了 CTL 在广泛癌症的过继免疫治疗中的抗肿瘤效果。