Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC 27157, USA.
Acta Biomater. 2013 Mar;9(3):5431-7. doi: 10.1016/j.actbio.2012.11.019. Epub 2012 Nov 21.
Natural extracellular matrix (ECM) proteins possess critical biological characteristics that provide a platform for cellular adhesion and activation of highly regulated signaling pathways. However, ECM-based biomaterials can have several limitations, including poor mechanical properties and risk of immunogenicity. Synthetic biomaterials alleviate the risks associated with natural biomaterials but often lack the robust biological activity necessary to direct cell function beyond initial adhesion. A thorough understanding of receptor-mediated cellular adhesion to the ECM and subsequent signaling activation has facilitated development of techniques that functionalize inert biomaterials to provide a biologically active surface. Here we review a range of approaches used to modify biomaterial surfaces for optimal receptor-mediated cell interactions, as well as provide insights into specific mechanisms of downstream signaling activation. In addition to a brief overview of integrin receptor-mediated cell function, so-called "biomimetic" techniques reviewed here include (i) surface modification of biomaterials with bioadhesive ECM macromolecules or specific binding motifs, (ii) nanoscale patterning of the materials and (iii) the use of "natural-like" biomaterials.
天然细胞外基质 (ECM) 蛋白具有关键的生物学特性,为细胞黏附提供了平台,并激活了高度调控的信号通路。然而,基于 ECM 的生物材料可能存在几个局限性,包括较差的机械性能和免疫原性风险。合成生物材料减轻了与天然生物材料相关的风险,但往往缺乏引导细胞功能的强大生物学活性,而不仅仅是初始黏附。深入了解细胞对 ECM 的受体介导黏附和随后的信号激活,促进了功能化惰性生物材料的技术发展,以提供具有生物活性的表面。在这里,我们回顾了一系列用于修饰生物材料表面以实现最佳受体介导细胞相互作用的方法,并深入了解下游信号激活的特定机制。除了简要概述整合素受体介导的细胞功能外,这里回顾的所谓“仿生”技术包括:(i)用生物黏附 ECM 大分子或特定结合基序修饰生物材料,(ii)对材料进行纳米级图案化,以及(iii)使用“类似天然”的生物材料。