Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
Adv Mater. 2010 Nov 2;22(41):4551-66. doi: 10.1002/adma.201000468.
It is becoming increasingly evident that cell biology research can be considerably advanced through the use of bioengineered tools enabled by nanoscale technologies. Recent advances in nanopatterning techniques pave the way for engineering biomaterial surfaces that control cellular interactions from the nano- to the microscale, allowing more precise quantitative experimentation capturing multi-scale aspects of complex tissue physiology in vitro. The spatially and temporally controlled display of extracellular signaling cues on nanopatterned surfaces (e. g., cues in the form of chemical ligands, controlled stiffness, texture, etc.) that can now be achieved on biologically relevant length scales is particularly attractive enabling experimental platform for investigating fundamental mechanisms of adhesion-mediated cell signaling. Here, we present an overview of bio-nanopatterning methods, with the particular focus on the recent advances on the use of nanofabrication techniques as enabling tools for studying the effects of cell adhesion and signaling on cell function. We also highlight the impact of nanoscale engineering in controlling cell-material interfaces, which can have profound implications for future development of tissue engineering and regenerative medicine.
越来越明显的是,通过使用纳米技术实现的生物工程工具,细胞生物学研究可以得到极大的推进。最近纳米图案化技术的进步为工程生物材料表面铺平了道路,这些表面可以从纳米到微米尺度控制细胞相互作用,允许更精确的定量实验来捕捉复杂组织生理学的多尺度方面在体外。现在可以在生物相关的长度尺度上实现对纳米图案化表面上细胞外信号的空间和时间控制显示(例如,以化学配体、控制硬度、纹理等形式的信号),这对于研究黏附介导的细胞信号转导的基本机制的实验平台特别有吸引力。在这里,我们概述了生物纳米图案化方法,特别关注最近在使用纳米制造技术作为研究细胞黏附和信号对细胞功能影响的使能工具方面的进展。我们还强调了纳米工程在控制细胞-材料界面方面的影响,这对组织工程和再生医学的未来发展具有深远的意义。